

Closure

Theorem If A, B regular languages
then so are

① $A \cup B$ (union)

② AB (concatenation)

③ A^*

④ $A \cap B$ (intersection)

⑤ \overline{A} (complement)

In other words, the class of regular languages are closed under union, concatenation, star, intersection and complement.

PROOF:

1-3

Build FA for A and B.

Then convert to FA for
 $A \cup B$ or AB or A^* as
in algorithm RE to FA.

OR

Build RE for A and B.

Then combine:

$R_A + R_B$ or $R_A R_B$

or $(R_A)^*$

4

product construction

5

For DFA, interchange
accept & reject

de Morgan's law

$$A \cap B = \overline{\overline{A} \cup \overline{B}}$$

So if closed under union and complementation, then must be closed under intersection.

Theorem Regular languages

closed under reversal.

In other words, if A is regular, then language of all reversals of ~~words~~^{strings} in A is also regular.

Idea: Reverse RE or
Reverse arrows on FA.