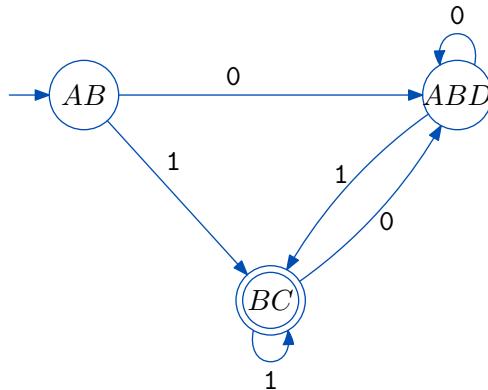


Some Answers on: Regular Languages

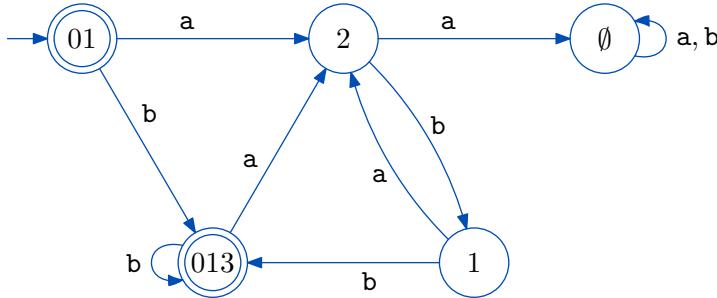
B1: (a)



(b) Several answers including: $(b^*a + bab^*a)^*b$

B2: Use the product construction with the two-state DFA accepting all string of even length. If M is the FA for L , then the FA for L^E is as follows. For every state q in M , create two states labeled q^e and q^o . The start state is q_0^e where q_0 was the start state of M ; the accept state are all states q^e where q is an accept state of M . And for each transition $q_i \rightarrow q_j$ of M add two transitions $q_i^e \rightarrow q_j^o$ and $q_i^o \rightarrow q_j^e$.

B3:



B4: (a) Add a new start state with ε -transitions to all other states.

(b) Add a separate copy of the automaton, say L' . Then for every non- ε -transition in L , say $x \rightarrow y$ on c , add an ε -transition from x to the copy of y in L' . Finally, make all states in L reject.

(c) For every state, say x , create two copies, say x_1 and x_2 . For every original transition $x \rightarrow y$ on c , add a transition from x_1 to y_2 on c and a transition from x_2 to y_1 on ε .

B5: (a) Let L_1 be any nonregular language and let L_2 be its complement.

(b) $\{0^{100}\}$

B6: (a) A DFA accepts every string if and only if every state is an accept state.

(b) Convert the RE to a DFA (via an NFA) and then use the above test.

B7: (a) $\{\varepsilon, 1, 11, 110\}$
(b) $\{\varepsilon, 0, 00, 000\}$
(c) $\{\varepsilon, 0, 01, 011, 1\}$

B8: Suppose the language, call it L , were regular. Let k be the number of states of a DFA for L . Consider the string $z = 0^k 1^k 0^k$ —this is in L . Split $z = uvw$ according to the Pumping Lemma. Then, because $|uv| \leq k$, it follows that v is always a string of 0's. Thus, $uv^2w \notin L$, a contradiction of the Pumping Lemma.

B9: Let C be an infinite subset of B and suppose that C is regular. Then C is accepted by some DFA with k states. Since C is infinite, there exists some $\ell \geq k$ such that $z = 0^\ell 1^\ell$ is in C . By the Pumping Lemma one can write $z = uvw$ such that v is nonempty and uv^2w is in C . But uv^2w either has the wrong format or does not have equal numbers of 0s and 1s, a contradiction. Therefore C is not regular.

B10: $\{\varepsilon, 0, 1, 00\}$