

Some Answers on: Context-Free Languages

D1: (a) palindromes without middle marker

$$(b) 0^n 1^n$$

$$(c) 0^n 1^n 2^n$$

D2: (b)

$$A \rightarrow 0C \mid 1B$$

$$B \rightarrow 0D \mid 1A \mid 0$$

$$C \rightarrow 0A \mid 1D \mid 1$$

$$D \rightarrow 0B \mid 1C$$

D3: (a) No

(b) No

(c) Yes: the language contains just one string: it is $\{a\}$.

D4: (a) Any context-free language e.g. Σ^*

(b) Does Not Exist

(c) For example, $C = \{0, 1, 2\} \cup \{0^n 1^n 2^n : n \geq 0\}$: here $C^* = \Sigma^*$

$$(d) 0^n 1^n 2^n$$

$$(e) 0^n 1^n 2^m \text{ and } 0^n 1^m 2^m$$

(f) Take any two non context-free languages whose alphabets are disjoint.

D5: (a)

$$S \rightarrow 0S \mid 1S \mid 0T$$

$$T \rightarrow 0$$

(b)

$$S \rightarrow 0S \mid 0T \mid 0$$

$$T \rightarrow 0S$$

D6: Take the CFG for L . Then in every production, replace a by 0 , b by 1 , and c by 01 .

D7: Assume $B \cap E$ is context-free. Let k be the constant of the Pumping Lemma. Let $z = 0^k 1^{2k} 0^k$. Note $z \in L$.

Consider split $z = uvwxy$. Since $|vwx| \leq k$, if v or x contains 0 's, then these 0 's are from only one block of 0 's, and so $z^{(2)} = uv^2wx^2y$ is not a palindrome. On the other hand, if v and x contain only 1 's, then $z^{(2)} = uv^2wx^2y$ has more 1 's than 0 's.

A contradiction.

D8: 1) We should assume the language IS context-free.

2) We did not guarantee z is long enough for the Pumping Lemma to apply.

3) We did not consider all possibilities for v .

D9: Let L stand for the language. Suppose that L is context-free. Let k be the constant of the pumping lemma. Set $z = a^k b^k a^k b^k a^k b^k$. Say one writes $z = uvwxy$. The pumping lemma claims that $z^{(i)} \in L$ for all i ; but this does not hold for $z^{(0)}$. For, since $|vwx| \leq k$, at least one block of a 's is undisturbed as one block of b 's. So the result when split in three does not have three identical pieces. This is a contradiction. Therefore, L is not context-free.