

Establishing Closure

A **complexity class** is a set of languages. So for example, the regular languages are a class, as are the recursive languages.

As before, **closure** means if we have some language(s) in some class, then the result of doing some operation to the language(s) yields a language of the same class.

Here is a typical example.

Example. Given string z , define the sampling of z as the string consisting of every alternate character in z , starting with the first. For example, the sampling of THEORY is TER. For a language L , define the sampling of L , denoted L^s , as the set of samplings of all strings in L . Show that the class of r.e. languages is closed under sampling.

So the task is:

Given a TM that accepts L (but might not halt), build a TM that accepts L^s .

What the new TM must answer is (using the TM for L as a subroutine): given a string w , is there a string in L whose sampling is w ?

A natural way to proceed is to take the input string w , and generate all possible original strings whose sampling would be that string. E.g., given TER, generate TAEAR, TAEARA, TAEBR, etc. (assuming the alphabet of L was the lower-case letters). This generation can easily be done by some looping.

This yields a long, but **finite**, collection of strings that might have been the original string. We then need to test each of these strings to see if any is in L . If at least one is in L , then w is in L^s . If none is in L , then w is not in L^s .

So we submit each possible original string to the TM for L . But because the TM for L is not guaranteed to halt, we must run these submissions in parallel. (Or more accurately, simulate each thread for one step, and repeat indefinitely).

If w is in L^s , then at least one of these runs will terminate with a positive answer, and we will be able to stop the process and answer yes. Otherwise the process might go on forever; but that is okay.