

The Pumping Lemma

The Pumping Lemma

The Pumping Lemmas say:

If L is a regular/context-free language
Then strings in L have a pattern

pumping: 2

Using the Pumping Lemma

If there is a string in L without a pattern

Then L is NOT a regular/context-free language

pumping: 3

The Pumping Lemma for Regular Language

If L is a regular language

Then every long string in L has a repeatable segment

pumping: 4

Using Pumping Lemma for Regular Language

Proof by contradiction: Suppose it is regular and then exhibit one long string in L without a repeatable segment.

pumping: 5

The Pumping Lemma for Regular Language

If L is a regular language

Then there is constant k such that
every string in L of length at least k can be
written as uvw such that
 $uv^i w$ is in L for $i = 0, 1, 2, \dots$

To use: provide one explicit string and
show that it transgresses

The Template

Suppose L is regular.

Let k be the constant of the PL.

Let $z =$

Then z is long enough and in L . Consider split uvw . Then

So z does not have a repeatable segment. A contradiction.

Examples

$0^n 1^n$: use $z = 0^k 1^k$

The language of a's, b's, c's where the numbers of each char are different: use $z = a^k b^{k+1} c^{k+2}$

Binary palindromes: needs stronger Pumping Lemma