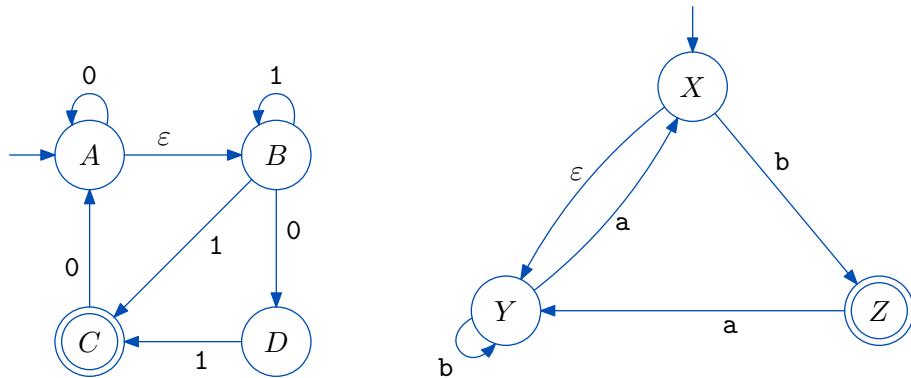


Supplemental Questions on: Regular Languages

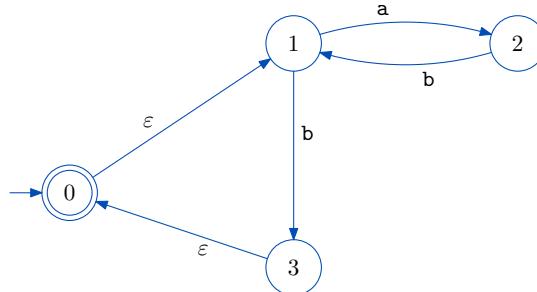
B1: (a) For the **leftmost** NFA below, use the **subset construction** to give a DFA that is equivalent to it.

(b) For the **rightmost** NFA below, use the GFA approach to construct an RE that is equivalent to it.



B2: Suppose language L is accepted by FA M . Define L^E as the set of all strings in L that have even length. Explain how to construct an FA that accepts L^E .

B3: Apply the subset construction to produce a DFA that accepts the same language as the following NFA.



B4: (a) Given language L , the language L^F is defined as the set of all **final segments** of strings in L . For example, if $L = \{DO, GOOD\}$, then $L^F = \{DO, O, \epsilon, GOOD, OOD, OD, D\}$. Provide an algorithm that converts an FA for language L to one for language L^F .

(b) For a language L , let L^o be the set of all strings obtained from all strings of L by omitting one symbol from the string. For example, if L contains *dog*, then L^o contains *og*, *dg*, and *do*. Show how to build an FA for L^o given an FA for L .

(c) Given a string z , the **sampling** of z is the string consisting of every alternate character in z , starting with the first. For example, the sampling of *Goddard* is *Gdad*. Describe an algorithm that converts a DFA for language L to an FA for the set of all samplings of strings in L .

B5: (a) Give an example of nonregular languages L_1 and L_2 such that $L_1 \cup L_2$ is regular.

(b) Give an example of a regular language such that any DFA accepting it requires at least 100 states.

B6: Explain how to tell whether a language is Σ^* or not:

- (a) Given a DFA for the language.
- (b) Given an RE for the language.

B7: Give a biggest possible set of **pairwise distinguishable** strings with respect to:

- (a) the set of all binary strings containing 110 as a substring.
- (b) the set of all binary strings not containing 000 as a substring.
- (c) the set of all binary strings starting with 011.

B8: Use the **Pumping Lemma** to show that the following languages is not regular:

$$\{ 0^n 1^n 0^n : n \geq 10 \}.$$

B9: Consider the language $B = \{ 0^n 1^n : n \geq 0 \}$ and let C be a subset of B . Use the Pumping Lemma to show that if C is infinite, then C is not regular.

B10: Let L be the language corresponding to the RE $(0+1)^*(00+11)(0+1)^*$.

Find a set of maximum size of strings that are pairwise distinguishable with respect to L .