


Supplemental Questions on: Context-Free Languages

D1: Give an example of:

- (a) a language accepted by a PDA but not by any deterministic PDA.
- (b) a language accepted by a deterministic PDA but not by any NFA.
- (c) a non-context-free language whose complement is context-free.

D2: (a) Define a regular grammar.

(b) Give a **regular grammar** for the language of the following FA.

D3: For the following grammar:

$$S \rightarrow AS \mid SB \mid a$$

$$A \rightarrow BA$$

$$B \rightarrow \epsilon$$

- (a) Does this grammar generate the empty string?
- (b) Is this grammar in Chomsky Normal Form?
- (c) Is the language of this grammar finite?

D4: Give one example of each of the following, or state that it does not exist.

- (a) A context-free language A such that A^* is context-free.
- (b) A context-free language B such that B^* is **not** context-free.
- (c) A **non**-context-free language C such that C^* is context-free.
- (d) A **non**-context-free language D such that D^* is **not** context-free.
- (e) Languages E_1 and E_2 such that E_1 and E_2 are context-free but $E_1 \cap E_2$ is not.
- (f) Languages F_1 and F_2 such that F_1 and F_2 are not context-free but $F_1 \cap F_2$ is.

D5: (a) Give an **unambiguous regular** grammar for the set of all binary strings ending in 00.

- (b) Give an example of a regular grammar that is ambiguous.

D6: For a string w from the alphabet $\{a, b, c\}$, the **splonk** of w is obtained by replacing every a by 0, every b by 1, and every c by 01. For example, if w is $abbc$, then the splonk of w is 01101 . For a language L with alphabet $\{a, b, c\}$, let L^s be the set of splonks of all strings in L .

Show, by means of an algorithm, that if L is context-free then so is L^s .

D7: Let B denote the set of all binary palindromes and E denote the set of all strings with equal numbers of 0s and 1s. Use the Pumping Lemma to show that the intersection $B \cap E$ is not context-free.

D8: Explain TWO things wrong with the following “proof” that the language L of $0^n 1^n$ is not context-free.

Assume L is not context-free.

Consider the string $z = 0^{999} 1^{999}$.

Then z is in L .

Split z as $z = uvwxy$.

Assume $v = 01$ and $x = \varepsilon$.

Then uv^2wx^2y is not in L .

This is a contradiction of the Pumping Lemma, and so L is not context-free.

D9: Show that the following language is not context-free: $\{ www : w \in \{a, b\}^* \}$