

Uncountable and Undecidable

Countable and Uncountable

There are levels of infinity. The first level is the **countable** sets. A collection where each object has a finite description is countable. So the set of FAs or strings or integers or TMs etc. is countable. However,

Cantor's Theorem. The set of languages is uncountable.

Thus, almost every language is not r.e.

Reductions

We omit the exact definition of reduction. But

Idea. If language A reduces to language B , then B is as least as hard as A .

In CS we usually reduce a problem to a problem that we know how to solve. Here we do the reverse and use the following consequence:

Fact. If language A is not recursive/r.e. and A reduces to B , then B is not recursive/r.e.

Decidable Problems = Recursive Languages

Recall that a yes/no problem P is **decidable** if there is an algorithm/TM for it that always halts and gives the correct answer.

If one writes down all the instances where the answer is yes, one gets a language, say Y_P . It follows that:

Connection. Problem P is decidable if and only if language Y_P is recursive.

Halting Problem

We claimed earlier that most problems about TMs are undecidable. We can now justify those claims. For example:

Theorem. The halting problem is undecidable

The idea is that, given any TM, one can re-program it so that it never halts-and-rejects but instead goes off into an infinite loop. So answering the acceptance problem reduces to answering the halting problem.