

In-class Practice 16: Pumping Lemma

Let C be the language of all strings of **a**'s, **b**'s, **c**'s and **d**'s, such that the number of **a**'s equals the number of **b**'s, and the number of **c**'s equals the number of **d**'s.

Prove that C is not context-free.

Suppose that C is context-free. Then let k be the constant of the Pumping Lemma. Choose the string

$$z = \mathbf{a}^k \mathbf{c}^k \mathbf{b}^k \mathbf{d}^k$$

The string z is in the language C , and is sufficiently long for the Pumping Lemma to apply.

Consider the split of the string z into $uvwxy$ (that the Pumping Lemma says exists). Because vwx combined has length at most k , the string vx can contain symbols from at most two of the blocks (and these blocks must be next to each other). So if vx contains an **a**, then it cannot contain a **b**, and if vx contains a **c**, then it cannot contain a **d**, and vice versa.

In every case this means that $z^{(0)} = uwy$ either does not have equal **a**'s and **b**'s, or does not have equal **c**'s and **d**'s (or both). That is, $z^{(0)}$ is never in the language C , a contradiction.