

In-class Practice 21: Closure Again

Let A be an alphabet, and let f be a function that maps each symbol in A to some nonempty string. Given a string w in A^* , we define the string w^f as replacing every symbol in w by its corresponding f value. And we define for language L the language L^f as the set of all w^f for w in L .

(a) Show that if L is r.e. then so is L^f .

Here is procedure for L^f .

Consider the input string x .

Generate all possible strings w such that $w^f = x$.

(Since f does not replace symbol by empty string, the length of w is at most the length of x ; so one can just generate all strings of length at most $|x|$ from alphabet A and see which of them work.)

For all the w such that $w^f = x$:

run machine for L on the string w , doing all of this in parallel.

If any of the machines accept their w , stop and accept.

If all the machines terminate and reject their w , reject.

(b) Show (by means of an example) that L^f can be regular even if L is not.

Consider your favorite non-regular binary language L that contains a string of all possible lengths.

E.g. binary strings with unequal 0's and 1's.

Then let f map both 0 and 1 to the symbol #.

Then L^f is all strings of #, which is clearly regular.