Let A be an alphabet, and let f be a function that maps each symbol in A to some nonempty string. Given a string w in A^*, we define the string w^f as replacing every symbol in w by its corresponding f value. And we define for language L the language L^f as the set of all w^f for w in L.

(a) Show that if L is r.e. then so is L^f.

Here is procedure for L^f.
Consider the input string x.
Generate all possible strings w such that $w^f = x$.
(Since f does not replace symbol by empty string, the length of w is at most the length of x; so one can just generate all strings of length at most $|x|$ from alphabet A and see which of them work.)
For all the w such that $w^f = x$:
run machine for L on the string w, doing all of this in parallel.
If any of the machines accept their w, stop and accept.
If all the machines terminate and reject their w, reject.

(b) Show (by means of an example) that L^f can be regular even if L is not.

Consider your favorite non-regular binary language L that contains a string of all possible lengths.
E.g. binary strings with unequal 0’s and 1’s.
Then let f map both 0 and 1 to the symbol #.
Then L^f is all strings of #, which is clearly regular.