1. Complete the following characterization of invertible matrices: A square matrix is invertible if and only if
 (a) it is row equivalent to... the identity
 (b) the columns of A are... linearly independent
 (c) the determinant of A is... not zero

2. Consider the following matrices

 $$A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 3 & 3 \\ 0 & 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 1 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & 3 & 5 \end{bmatrix}$$

 Determine:
 (a) the determinant of A.

 $$3$$

 (b) the determinant of B.

 $$8 \times 1 = 8$$

 (c) the determinant of the matrix obtained from A by multiplying every entry by 100.

 $$3 \times 100^3$$

 (d) the determinant of B^{1000}.

 $$8^{1000}$$
3. Let us say a 2×2 matrix B is **purple** if $B^2 = B$.

(a) Give two examples of singular purple matrices.

\[
\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}
\]

(b) Show that there are exactly two possible values for the determinant of a purple matrix.

\[
\det(B^2) = \det(B) \times \det(B)
\]

but $B^2 = B$. So need $\det(B)^2 = \det(B)$

So $\det(B) = 0$ or 1

(c) Find all invertible purple matrices.

\[
B^2 = B \implies BBB^{-1} = BB^{-1} \implies B = I
\]

4. Determine whether each of the following is True/False. Justify your answer.

(a) The real numbers are closed under division.

 False (No divide by zero)

(b) The set of all polynomials with an even number of terms (such as 0 or $1 + t$) forms a vector space.

 False : $(1 + t) + (-1 + t) = 2t$

(c) \mathbb{R}^3 is a subspace of \mathbb{R}^4.

 False ! (\mathbb{R}^3 is not contained in \mathbb{R}^4)

(d) The row space of the identity matrix is the same as its column space.

 True (both \mathbb{R}^n)

(e) The union of two subspaces is always a subspace.

 False (e.g. in \mathbb{R}^2 two lines are subspaces but their union is not)