1. Consider the following matrix.

\[
T = \begin{bmatrix}
3 & 0 & 0 \\
0 & 2 & 1 \\
0 & 1 & 2
\end{bmatrix}
\]

Determine nonsingular matrix \(P \) and diagonal matrix \(D \) such that \(T = PDP^{-1} \).

2. Prove that for any vectors \(u \) and \(v \) the following is true:
\(u + v \) and \(u - v \) are orthogonal if and only if \(||u|| = ||v|| \).

3. True/False. Justify your answer.

 (a) A matrix and its inverse have the same eigenvalues.

 (b) If two matrices are similar, then they have the same characteristic polynomial.

 (c) If \(W \) is any set of vectors, then \((W^\perp)^\perp = W \).

 (d) Every vector space has an orthonormal basis.

4. For the vectors \(a = (1, 2, 3) \) and \(b = (-2, 0, 5) \), determine the projection of each onto the other.

5. Give an orthonormal basis of \(\mathbb{R}^2 \) that includes a vector that is orthogonal to \((1, 1) \).