1. Prove by induction that the sum of the first \(n \) odd numbers is \(n^2 \).

2. Prove by induction that \((2n)!\) is a multiple of \(2^n\) for all positive integers \(n \).

3. Prove by induction that
\[
1 + \frac{1}{5} + \frac{1}{25} + \ldots + \frac{1}{5^n} = \frac{5 - \frac{1}{5^n}}{4}.
\]

4. Prove by induction that \(2^{n+1} + 5^n\) is a multiple of 3 for all positive integers \(n \).

5. Find the problem with the following proof that all people are the same age:

We prove by induction on \(n \geq 1 \) that for any set \(S \) of \(n \) people all people in the set \(S \) are the same age. The base case is \(n = 1 \): there is only one person and they certainly are the same age as themselves. So assume the statement is true for \(n - 1 \), and test for \(n \). Let \(S \) be some set of \(n \) people. Pick any person \(A \) out of the set. By the IH, all the remaining people in \(S \) have the same age. So we just have to argue that \(A \) has the same age as everyone else.

If we start with \(S \) again and omit someone else say \(B \), by the IH we get that \(A \) is the same age as everyone else except \(B \). By repeating this with different choices of \(B \), we get that \(A \) is the same age as everyone else. So everybody in \(S \) has the same age.