1. (a) Show that if K_n has a K_3 decomposition, then n is of the form $6k + 1$ or $6k + 3$ for k an integer.
(b) Show that K_7 has a K_3 decomposition.

2. For a fixed graph H, define a graph as helplessly H-decomposable if no matter what choices one makes, one can always repeatedly remove copies of H and use up all the edges of G. For example, C_4 is helplessly P_3-decomposable, but P_5 is not helplessly P_3-decomposable.
(a) Determine all helplessly P_3-decomposable graphs on at most six edges.
(b) Propose a general characterization about helplessly P_3-decomposable graphs.
(c) Prove your characterization.

3. (a) Determine all trees on 6 vertices, and for each, calculate the diameter, radius, average eccentricity, and Wiener index.
(b) Which tree(s) has the smallest value of the parameters? The largest?

4. Describe a graph that has exactly 2024 spanning trees.

5. (a) Draw a tournament of order 7 where exactly one vertex is a king.
(b) Draw a tournament of order 7 where every vertex is a king.
(c) Show that it is not possible for there to be exactly two kings.

Due: Tuesday February 6