Hamilton Cycles and Beyond

We define a Hamilton cycle as one that contains all the vertices; similarly a Hamilton path is one that contains all the vertices.

Dirac’s theorem. If G is a graph with order $n \geq 3$ and minimum degree $\delta \geq n/2$, then G contains a Hamilton cycle.

Proof. Consider the longest path P; say it goes from u to v. Both u and v must have all their neighbors on P. By counting, either u and v are adjacent, or there are consecutive vertices x, y on P with edges xv and yu. This yields a cycle C using all vertices of P.

Suppose that C is not a Hamilton cycle. Since all neighbors of u are on P, the cycle C must have at least $n/2 + 1$ vertices. Any vertex w not on C has $n/2$ neighbors, and so must have an edge joining it to C. But then one can create a longer path containing w and all of C, a contradiction. \(\square\)

This theorem is best possible. Here are two graphs with minimum degree $(n - 1)/2$ that do not have a Hamilton cycle: $K_{m,m+1}$; or two copies of K_m with one vertex of each identified. There are many extensions. The first was by Ore: if the degree-sum $d(u) + d(v) \geq n$ for all nonadjacent vertices u and v, then the graph has a Hamilton cycle.

Chvátal–Erdős. If G is a graph with order at least 3 and the connectivity is at least the independence number, then the graph has a Hamilton cycle.

Proof. If the independence number is 1, then the graph is complete. So assume the independence number $k \geq 2$. In particular this means the connectivity is at least 2. Consider the longest cycle C. Suppose there exists a vertex w outside the cycle. By Menger’s Theorem, there are internally disjoint paths P_1, \ldots, P_k from w to C. If any two paths meet C at consecutive vertices of C, then one can insert w to get a longer cycle. So assume not.

For each path P_t, let v_t be the vertex of C after the end of P_t going clockwise. We claim that: the set $\{v_t\}$ is an independent set. This follows because a chord $v_tv_{t'}$ would enable a longer cycle using the chord, P_t, and $P_{t'}$. 34
But by the condition of theorem, adding w to \{\(v_\ell\)\} yields a set that is not independent. This means that w is adjacent to some \(v_\ell\), and one can thus insert w using \(P_\ell\) and this edge. This contradicts the claim that C is a longest cycle. \(\blacksquare\)

For planar graphs, Tutte showed that 4-connected implies the existence of a Hamilton cycle. In general, a necessary condition for a Hamilton cycle is that the removal of any vertex set S leaves at most $|S|$ components. The **toughness** of a graph is defined to be the minimum of the ratio $|S|/k(G - S)$ over all cut-sets S, where $k(G - S)$ is the number of components of $G - S$.

Open Question. Does a sufficiently large toughness guarantee a Hamilton cycle?

A graph is **pancyclic** if it contains cycles of each length from 3 up to its order. The minimum-degree threshold to guarantee a graph is pancyclic is only slightly larger than Dirac’s bound:

Minimum Degree. If G is a graph with order $n \geq 3$ and minimum degree $\delta \geq (n + 1)/2$, then G is pancyclic.

However, if the graph is known to have a Hamilton cycle, then the threshold can be reduced:

BFG. If G is a graph that contains a Hamilton cycle and a triangle and minimum degree $\delta \geq (n + 2)/3$, then G is pancyclic.