Hamiton Cycles and Beyond

We define a Hamilton cycle as one that contains all the vertices; similarly a Hamilton path is one that contains all the vertices.

Dirac’s theorem. If G is a graph with order $n \geq 3$ and minimum degree $\delta \geq n/2$, then G contains a Hamilton cycle.

Proof. Suppose there is a counterexample, meaning a graph with the minimum degree condition that does not have a hamilton cycle. Then consider the counterexample G with the maximum number of edges. Clearly G is not complete; say it is missing edge uv. So consider the graph $G + uv$. By our discussion, this has a Hamilton cycle, and that Hamilton cycle uses edge uv. So in G there is a Hamilton path P from u to v.

Say P is $u = x_1, \ldots, v = x_n$. Suppose there is i with $2 \leq i \leq n - 2$ where the pair $Q_i = \{ux_{i+1}, vx_i\}$ of edges both exist; then we get a cycle using all vertices of G.

\[
\begin{array}{c}
 u \quad x_i \quad x_{i+1} \quad v \\
| \quad | \quad | \\
| \quad | \quad | \\
| \quad | \quad | \\
\end{array}
\]

The union of the Q_i accounts for all the edges incident with u or v, except for ux_2 and vx_{n-1}. Thus the total number of edges incident with them is at most $n - 1$. But that contradicts the minimum degree condition. \blacksquare

This theorem is best possible. Here are two graphs with minimum degree $(n - 1)/2$ that do not have a Hamilton cycle: $K_{m,m+1}$; or two copies of K_m with one vertex of each identified. There are many extensions. The first was by Ore: if the degree-sum $d(u) + d(v) \geq n$ for all nonadjacent vertices u and v, then the graph has a Hamilton cycle.

Chvátal–Erdős. If G is a graph with order at least 3 and the connectivity is at least the independence number, then the graph has a Hamilton cycle.

Proof. If the independence number is 1, then the graph is complete. So assume the independence number $k \geq 2$. In particular this means the connectivity is at least 2. Consider the longest cycle C. Suppose there exists a vertex w outside the cycle. By Menger’s Theorem, there are internally disjoint paths P_1, \ldots, P_k
from w to C. If any two paths meet C at consecutive vertices of C, then one can insert w to get a longer cycle. So assume not.

For each path $P_ℓ$, let $v_ℓ$ be the vertex of C after the end of $P_ℓ$ going clockwise. We claim that: the set $\{v_ℓ\}$ is an independent set. This follows because a chord $v_ℓv_ℓ'$ would enable a longer cycle using the chord, $P_ℓ$, and $P_ℓ'$.

But by the condition of theorem, adding w to $\{v_ℓ\}$ yields a set that is not independent. This means that w is adjacent to some $v_ℓ$, and one can thus insert w using $P_ℓ$ and this edge. This contradicts the claim that C is a longest cycle. □

For planar graphs, Tutte showed that 4-connected implies the existence of a Hamilton cycle. In general, a necessary condition for a Hamilton cycle is that the removal of any vertex set S leaves at most $|S|$ components. The **toughness** of a graph is defined to be the minimum of the ratio $|S|/k(G - S)$ over all cut-sets S, where $k(G - S)$ is the number of components of $G - S$.

Open Question. Does a sufficiently large toughness guarantee a Hamilton cycle?

A graph is **pancyclic** if it contains cycles of each length from 3 up to its order. The minimum-degree threshold to guarantee a graph is pancyclic is only slightly larger than Dirac’s bound:

Minimum Degree. If G is a graph with order $n ≥ 3$ and minimum degree $δ ≥ (n + 1)/2$, then G is pancyclic.

However, if the graph is known to have a Hamilton cycle, then the threshold can be reduced:

BFG. If G is a graph that contains a Hamilton cycle and a triangle and minimum degree $δ ≥ (n + 2)/3$, then G is pancyclic.