Vectors and Linear Combinations
Defn. A matrix with one column is called a (column) vector.

We use bold letters for vector variables, such as \(x \) and \(v \).

We sometimes write the column vector \[
\begin{bmatrix}
3 \\
5
\end{bmatrix}
\] as \((3, 5)\).
Vector Operations

Vector **addition** is performed by adding the corresponding entries. **Scalar multiplication** is performed by scaling each entry. That is,

\[
\begin{bmatrix}
 u_1 \\
 u_2
\end{bmatrix} + \begin{bmatrix}
 v_1 \\
 v_2
\end{bmatrix} = \begin{bmatrix}
 u_1 + v_1 \\
 u_2 + v_2
\end{bmatrix} \quad \text{and} \quad c \begin{bmatrix}
 u_1 \\
 u_2
\end{bmatrix} = \begin{bmatrix}
 cu_1 \\
 cu_2
\end{bmatrix}
\]

For example

\[
x \begin{bmatrix}
 2 \\
 4
\end{bmatrix} + y \begin{bmatrix}
 -1 \\
 7
\end{bmatrix} = \begin{bmatrix}
 2x - y \\
 4x + 7y
\end{bmatrix}
\]
Defn. We use \mathbb{R}^d for the set of all d-entry vectors whose entries are real numbers.

One can associate vector in \mathbb{R}^d with the corresponding point. For example, \mathbb{R}^2 is the 2-dimensional plane. And vector addition can be illustrated with a parallelogram:
Linear Combinations

Defn. A *linear combination* of vectors is formed by summing some multiple of each vector. The multipliers are called the *weights.*
Defn. The span of a collection of vectors is the set of all possible linear combinations. If \(S \) is a set, we will denote its span by \(\text{Span } S \).

For example, the span of a single (nonzero) vector is a line.

The span of two vectors is (usually) a plane.
Matrix-Vector Multiplication

Defn. If A is an $m \times n$ matrix and x is in \mathbb{R}^n, then the **matrix-vector product** Ax is the linear combination of the columns of A specified by x.

That is, if $A = [a_1, \ldots, a_n]$ (meaning its columns are vectors a_1, \ldots, a_n), and $x = (x_1, \ldots, x_n)$ then

$$Ax = x_1a_1 + x_2a_2 + \ldots + x_na_n$$
Example of Matrix-Vector Multiplication

For example,

\[
\begin{bmatrix}
2 & -1 \\
4 & 7
\end{bmatrix}
\begin{bmatrix}
3 \\
5
\end{bmatrix}
= 3
\begin{bmatrix}
2 \\
4
\end{bmatrix}
+ 5
\begin{bmatrix}
-1 \\
7
\end{bmatrix}
=
\begin{bmatrix}
1 \\
47
\end{bmatrix}
\]
Summary

A vector is a matrix with one column. We use bold letters for vector variables. \mathbb{R}^d is all d-entry vectors with real entries. Vector addition adds corresponding entries; scalar multiplication scales each entry.

A linear combination of vectors is any sum of some multiple of each vector. Their span is the set of all possible linear combinations. The product of matrix A with vector x is the linear combination of columns of A given by x.