Linear Transforms
Defn. A **linear transform** T is a function from one vector space to another vector space that interacts nicely with addition and scalar multiplication.

That is, for all vectors u and v in the domain and all reals c:

1. $T(u + v) = T(u) + T(v)$, and
2. $T(cu) = cT(u)$.

driver: 2
Every Matrix Transform is a Linear Transform

Fact. Every matrix transform is a linear transform.
The Kernel of a Linear Transform

Defn. The null space of a linear transform is the set of vectors that are mapped to 0; it is often called the **kernel**.

For example, differentiation is a linear transform from the polynomial space \(\mathbb{P}_n \) to the polynomial space \(\mathbb{P}_{n-1} \). Its kernel is the set of all constants.
Facts about Linear Transforms

Fact. For any linear transform:
1) The kernel is a subspace of the domain.
2) The range is a subspace of the codomain.
A linear transform is a function from a vector space to a vector space that interacts nicely with addition and scalar multiplication. Every matrix transform is a linear transform.

The null space or kernel of a linear transform is the set of all vectors mapped to 0. The kernel is a subspace of the domain while the range is a subspace of the codomain.