Properties of Eigenvalues and Eigenvectors
Algebraic Multiplicity

Defn. The *algebraic multiplicity* of eigenvalue \(\lambda \) is its multiplicity as a root of the characteristic polynomial.

Fact. The dimension of the eigenspace of \(\lambda \) is at most its algebraic multiplicity.
Eigenvectors and Linear Independence

Fact. Eigenvectors for distinct eigenvalues are linearly independent.
Eigenvalues of Matrix Powers

Fact. If matrix A has eigenvalues λ_i, then the power A^k has eigenvalues λ_i^k. Moreover, the eigenvectors are the same.
The **trace** of a matrix is defined as the sum of the diagonal entries.

Fact. For any matrix A,

(a) the determinant of A equals the product of its eigenvalues.

(b) the trace of A equals the sum of its eigenvalues.
Recall that \(i \) denotes the square-root of \(-1\).

Defn. If \(\lambda = a + bi \), then its \textbf{(complex) conjugate} is \(a - bi \).
Complex Eigenvalues

Fact. If λ is a complex eigenvalue of A, then so is its conjugate.
An Example

Consider the matrix \[
\begin{bmatrix}
a & -b \\ b & a
\end{bmatrix}.
\]

The characteristic polynomial is \((a - \lambda)^2 + b^2\); eigenvalues are \(\lambda = a \pm bi\).

As a matrix transform, this represents scaling by \(\sqrt{a^2 + b^2}\) and rotation through \(\arctan \frac{b}{a}\).
Symmetric Matrices

Fact. A real symmetric matrix has only real eigenvalues.
The algebraic multiplicity of eigenvalue is its multiplicity as root of the characteristic polynomial; the eigenspace has dimension at most its algebraic multiplicity.

Eigenvectors for distinct eigenvalues are linearly independent.

If A has eigenvalue λ_i, then A^k has eigenvalue λ_i^k with same eigenvector.
The product of the eigenvalues is the determinant; the sum of the eigenvalues is the trace, which is the sum of the diagonal entries.

If λ is complex eigenvalue of real matrix, then so is its conjugate. A real symmetric matrix has real eigenvalues.