
38 May-June 2007 ACM QUEUE rants: feedback@acmqueue.com

The Seven Deadly Sins of Linux Security

BOB TOXEN, HORIZON NETWORK SECURITY

T
he problem with security advice is that there is too
much of it and that those responsible for security cer-
tainly have too little time to implement all of it. The

challenge is to determine what the biggest risks are and to
worry about those first and about others as time permits.
Presented here are the seven common problems—the
seven deadly sins of security—most likely to allow major
damage to occur to your system or bank account. If any

of these are a problem on any of your systems, you will
want to take care of them immediately.

These seven deadly sins are based on my research and
experience, which includes too many people who wait
until after their Linux or Unix systems have suffered secu-
rity breaches before they take action to increase system
security, and on forensics analysis and discussions with
systems administrators. Most of these sins and their solu-

ACM QUEUE May-June 2007 39 more queue: www.acmqueue.com

The Seven Deadly Sins of Linux Security

1
2

3

5

6

7

4

Avoid these

common security risks

like the devil

tions also apply to Macs, Windows, and other platforms.
They are not ordered by risk level because committing

any one of them will likely allow your system to be com-
promised if it is accessible from the Internet. Even if you
are behind a firewall, if you receive any untrusted data
from the Internet, such as Web pages, e-mail, or instant
messages, your system is at great risk. Avoid these sins like
the devil.

Without further ado, here are the seven deadly sins
and what to do about them.

SIN ONE: Weak Passwords
As a systems administrator, you are aware of the system
breaches possible on your Linux or Unix machine. You
have taken the time and effort to devise a difficult-to-
guess root password that uses at least 12 characters that

40 May-June 2007 ACM QUEUE rants: feedback@acmqueue.com

include at least two words or no words from the dic-
tionary, uses both letters and digits, and has upper- and
lowercase letters and some punctuation characters.

I still run into clients with passwords so simple that
any hacker could break them in a few minutes with a
tweaked version of ssh that guesses different passwords.
Such hacker tools can be found on the Web easily with
Google or built by any C or C++ programmer. On Inter-
net-accessible systems, I have seen root passwords consist-
ing of a word followed by a small number, where that
word is related to the company, what it does, who is in it,
or where it is. A good hacker will go to your Web site and
see all of this information, then feed it into a password-
cracking program.

Another common mistake is to use the same password
or very similar passwords for root accounts (or other
important accounts) on different systems. Thus, a cracker
who breaches one system through a means other than
password guessing will then be able to install a Trojaned
server for ssh, FTP, or IMAP, or a Trojaned CGI program
on that system, see what passwords you use, and try them
on the other systems. I have seen this happen many
times.

A variation is to use ssh public keys to allow an
account on one system to ssh into another system
without supplying any password. At the very least, pick
a moderately hard-to-crack password for your ssh keys. If
you must have an automatic program use ssh without a
password to ssh into another system, then create either a

separate nonroot account on the target system or an alter-
nate account with UID 0 but a login “shell” that does just
what is needed, such as doing a backup.

An even better solution, say for a remote backup,
would be for the system needing to be backed up to ssh
into the system receiving the backups as a unique unpriv-
ileged account for this purpose and copy an encrypted
version of the backup. Thus, if the backup server is com-
promised, no confidential data will be obtained.

Let’s hope your root password is awesome and that no
one could guess it in 100 years. OK, some obsessive with
a program such as Crack could destroy it in a few days
except that you use shadow passwords, but that’s another
story. It is critically important to select good passwords.

How are your users doing? Choke, cough, gag, hack.
Every account is a possible entry point. Have your users
followed your advice, company policy, or threats to
devise good passwords? Are they being as careful as you
are? Probably not. Now it is your turn to don the black
hat and think like your enemy.

Can you break into your users’ accounts by using a
password-cracking program? You definitely will need to
get written management approval to conduct this level
of security audit. There are notable cases of unauthorized
audits landing people in jail or at least on the unem-
ployment rolls. (Randal Schwartz is one. The software
consultant and author was brought to trial for accessing
a password file at Intel in what he says was an attempt to
show lapses in security.)

You might even install a module in the passwd pro-
gram that automatically tries to break a user’s proposed
new password. Though the standard passwd program

The Seven Deadly Sins of Linux Security

Consider how severe the consequences
would be if one account or one system
gets hacked. Can the hacker then get
into other accounts or other systems? If
so, change passwords, ssh usage, etc. so
that the hacker cannot spread the dam-
age to other accounts and systems.

This illustrates the concept of con-
tainment. Accept that some account,
possibly root, on some system will get
compromised. Ensure that the compro-
mise will not spread by doing careful
failure analysis now, before you suffer a
compromise.

TI
P

Protecting every account is critical
because of local root vulnerabilities in
various programs and the Linux kernel
itself. These vulnerabilities allow a hacker
who gets shell access as any user to
make himself or herself root. TI

P

ACM QUEUE May-June 2007 41 more queue: www.acmqueue.com

makes very simple tests, there are more sophisticated
routines that include much of Crack’s capability. One way
to do this is to make use of the cracklib capability in the
PAM (pluggable authentication modules) enhancements
to the passwd program. The cracklib library analyzes
passwords to determine if they can be easily cracked. PAM
offers additional security for Linux and Unix systems.

Edit the /etc/pam.d/passwd file to include the code in
figure 1. This will cause the PAM-enabled passwd program
to load these dynamically loadable program libraries.
PAM now is standard with Red Hat. On some systems
these are in /lib instead of /usr/lib. (Another good source
for PAM information is http://www.sun.com/software/
solaris/pam/.)

On Slackware this capability will be enabled if the fol-
lowing line is present in /etc/login.defs (and the diction-
ary is installed):

CRACKLIB_DICTPATH /var/cache/cracklib/cracklib_dict

Consider restricting which remote systems can ssh
into your systems’ various accounts either through IP
tables firewall rules or by editing your ssh server’s configu-
ration file, /etc/ssh/sshd_config, to limit which remote
systems can ssh in and which accounts they can ssh into,
or use both methods for additional security. Make this list
very short for root (in sshd_config).

sin two: Open Network Ports
Just as every account on your system is a potential path
for a password cracker, every network service is a road to
it. Disable and uninstall services you do not need. Most

Linux distributions and
Unix vendors install tons
of software and services by
default. They deliberately
prefer easy over secure.
Many of these are neither
necessary nor wanted.
Take the time to remove
software and services you

do not need. Better yet, do not
install them to begin with.

To find out which services are being run, use the
netstat -atuv command. Even a home system can have
dozens of different ports open. A large Web server could
have more.

If there are services listed that you do not want to be
provided by this box, disable them. Many distributions
offer a control panel to do this easily, including Red Hat
and Mandriva. You may want to remove the binaries
from the disk or chmod them to 0, especially any that are
set-UID or set-GID.

NFS, finger, the shell, exec, login r* services (rsh, rexec,
and rlogin), FTP, telnet, sendmail, DNS, and linuxconf
are some of the more popular services that get installed
by default on many Linux distributions; at least some of
these should not be enabled for most systems. Most are
controlled by the daemon xinetd; these can be disabled
by editing the /etc/xinetd.d/* scripts.

You do not need the FTP or telnet daemons to use the
respective clients to connect to other systems. You do
not need the sendmail daemon listening on port 25 to
send mail out, to send mail to local users, or to download
mail via POP or IMAP. (You do need to invoke sendmail
periodically to de-spool delayed outgoing mail.) You need
DNS (named, the name daemon) only if other systems
will be querying yours for this data. Most programs
running on your own system will be very happy to read
/etc/resolv.conf and query the main DNS server of your
ISP or organization instead of contacting a named process
running on your system. Coincidentally, named’s ports
are some of the most popular ports that crackers use to
break into systems. If you do need to run named, use the
recently added facilities that allow it to chroot itself and
switch to a nonroot user.

All of these services, except the normal installations
of NFS,1 DNS, and sendmail, are started on demand by
xinetd. They may be turned off by commenting out their
entries under /etc/xinetd.d. Many distributions offer a
control panel or Linuxconf to do this easily, including
Red Hat and Mandriva.

passwd password requisite /usr/lib/security/pam_cracklib.so retry=3
passwd password required /usr/lib/security/pam_pwdb.so use_authtok

FIG 1
Avoid default passwords as if
your job depended on it. TI

P

42 May-June 2007 ACM QUEUE rants: feedback@acmqueue.com

The stand-alone services are turned off by altering
their entries under /etc/rc.d or in configuration files
there.

On Red Hat-based systems, issue the following com-
mands to shut down portmap and prevent it from being
restarted on reboot.

/etc/rc.d/init.d/portmap stop
chkconfig --del portmap

An alternative tool is the ASCII menu-based ntsysv
program. Like chkconfig, ntsysv manipulates the sym-
bolic links only under /etc/rc.d/rc[0-6].d, so you also
will need to explicitly shut down the service. To do both
of these, issue the commands

/etc/rc.d/init.d/portmap stop
ntsysv

On other distributions that use System V-style startup
scripts (/etc/rc.d/rc[0-6].d directories for Red Hat deriva-
tions and /etc/rc.[0-b].d for Debian), rename the appro-
priate script under rcX.d (X usually is 3) that starts with a
capital S and has the service name in it. For example,

cd /etc/rc.d/rc3.d
mv S11portmap K11portmap

Just as only scripts starting with S are invoked when
entering the respective run level, scripts starting with K
are invoked when exiting that run level. This is to turn
off daemons that should run only in that run level. For

example, this mechanism will turn off sshd, the ssh
daemon, when switching from run level 3 (multiuser
with networking) to run level s (single-user mode). Just as
a selected Ssomething script can be disabled by renaming
to ssomething, one of these latter scripts can be renamed
from Ksomething to ksomething to disable it.

On Slackware and similar systems, simply comment
out the lines starting them in /etc/rc.d/*. The grep pro-
gram may be used to find these. Be sure to terminate any
of these services that are running on your system after
altering the configuration files.

If you do not want to bother with kill, a simple reboot
will do this and verify that the configuration files were
correctly altered. (Having a set of available rescue disks
before this reboot would be a fine idea.)

To remove these services from your system, you can
use your distribution’s package manager. Red Hat-based
installations use RPM; Debian-based distributions use
dpkg; SuSE uses YAST; and Slackware uses pkgtool.

Linux and Unix are like the Swiss army knife of
networking: they have one or two tools that get used all
the time, others that are used less often, and some that
are never used. Unlike the Swiss army knife, you can slim
down Linux or Unix to just the services you need and dis-
card those you do not. I will never use the awl or scissors
on my knife just as I will never use rsh or the set-UID to
root features of mount or umount.

Decide which ports you wish to have open (such as
www and ftp) and close the rest. Closing unnecessary
ports makes your system more secure and perform better.

sin three: Old Software Versions
Linux and Unix are not perfect. People find new vulner-
abilities every month.2 Do not despair, though. The speed
with which problems are found and fixed in Linux is the
fastest on the planet. Your challenge as an administrator
is to keep up with the changes.

Each distribution has a mailing list through which
security bulletins are issued, and an FTP or Web site where
the fix will be available. There are also excellent indepen-
dent security mailing lists, such as Bugtraq and X-Force’s
Alert. You can (and should) subscribe to these lists.3

Other good sources of Linux security information are
http://www.lwn.net/ and http://www.linuxtoday.com/.
These sites are distribution-neutral and carry all of the
major distributions’ security advisories.

The Seven Deadly Sins of Linux Security

The most careful sysadmins will reboot
their systems several times after making
changes to startup scripts, other con-
figuration files, and the kernel, and after
installing security patches to ensure cor-
rect and reliable startup and operation. TI

P

ACM QUEUE May-June 2007 43 more queue: www.acmqueue.com

One of the advantages of Linux is that when a fix is
issued, it is very quick to install. Furthermore, unless it
is in the kernel, your downtime for that service is on the
order of seconds or minutes. Rarely, if ever, is a reboot
necessary.

sin four: �Insecure and Badly Configured
Programs

The use of insecure programs (such as PHP, FTP, rsh, NFS,
and portmap) in other than carefully controlled situa-
tions and failure to configure other programs properly
continues to be a major security sin.

Most sysadmins know that POP and IMAP (unless
wrapped in SSL), telnet, and FTP4 send passwords and data
in the clear (unencrypted). They know that PHP, NFS,
and portmap have a history of security problems, as well
as design defects in their authentication. Many use them
anyway, and then are surprised when they get broken
into. Instead, use spop, simap, ssh, and ssh’s scp or sftp,
or put a good firewall in front of that subnet, or set up a
restricted VPN between your facilities. If you absolutely
must use PHP, keep it patched and carefully audit your
code for problems.

Many programs are secure only if properly config-
ured. It is common for sysadmins to configure them
improperly, sometimes because of a lack of training and
understanding of the risks; other times use of an inse-
cure feature is deliberate, because “I just gotta have it.” A
recent case in point is Apache’s PHP capability, which has
had a history of security problems. These problems have
been well publicized, and still some people cannot seem
to use it securely or find an alternative. Security and con-
venience are often contradictory, and you have to make a
choice between the two.

Before deciding to deploy a service (or changing
which capabilities will be used or how the service will be
deployed), do some research. Check the security his-
tory and understand how the service may be deployed
securely. If it cannot be deployed securely, what are
secure alternatives? I still encounter people using FTP,
not realizing that sftp is an excellent alternative. Putting
an insecure service such as NFS behind a firewall may be
the solution for some. For others, putting their insecure
Windows networks behind firewalls, with their differ-
ent offices linked via a VPN between these same Linux
firewalls, offers excellent security. Configure a firewall
with separate subnets on separate interfaces for different
categories of users, such as students and faculty or sales,
human resources, and engineering.

Absolutely prohibit wireless networks inside of the

firewall or to any system with confidential information
unless all wireless traffic first is encrypted with IPsec or
equivalent. Do not rely on WEP (Wired Equivalent Pri-
vacy) or its successors.

Web servers and CGI programs are the bane of Linux
and Unix computer security. Simply speaking, a CGI pro-
gram is one of the easiest ways that a hacker can get into
your system. It is essentially a program that runs on your
computer at the request of anyone and everyone without
passwords and has the access to do powerful things (for
example, shipping valuable merchandise, revealing confi-
dential data such as your customers’ credit card numbers,
and moving money between accounts).

A CGI allows anyone to access your Web site, good
intentions or not. While other “accepted” servers such as
sendmail and named also will talk with anyone, the scope
of what a client may request is far smaller. Although these
latter servers have had their share of serious security bugs,
those that keep their security patches up to date have
minimal risk.

Here are a few hard and fast rules that will help make
your Web site secure.

Know your data (supplied by Web clients).
• �Establish maximums and minimums for data-entry

values and lengths of fields.
• �Decide which characters are acceptable in each field.

Expect the malicious to send you control characters
and non-ASCII bytes. Expect that crackers will use
the % encoding or alternate character sets to generate
these evil characters. Thus, you need to check for illegal
characters both before and after % conversion and in
different character sets.

• �Double-check each entered value. A surprising number
of shopping-cart packages put the price of items in the
form and believe the price in the filled-out form sent by
the user. All a user needs to do to give himself or herself
a discount is to alter this form.

• �If possible enumerate the allowed values instead of
using ranges (except for listing ranges of letters and
digits).

• �Understand, too, that an evil Web client can send bytes
back to your server. The hacker may copy and alter your
Web form to change your “fixed” fields, etc.

• �Use a secure language. Client-supplied data never
should be handed directly to a shell script; there are
too many opportunities for a cracker to get a shell or to
exploit a buffer overflow vulnerability. For many that
secure language will be C, C++, Perl, Java, or Python.
If that language offers checking for tainted data, use

44 May-June 2007 ACM QUEUE rants: feedback@acmqueue.com

it. One language does not fit all. Perl has a number of
features to enable safer CGI programs.5 These include
the “tainted data” feature, the -w flag to warn you about
things that you are creating but not using, the strict
capability, and perlsec. These features are discussed in
http://perldoc.perl.org/perlsec.html.

• �If you have many CGI programs—with a few being care-
fully written so that they manipulate confidential data,
and some that are more casually written because they
do not handle critical data—consider the following. Use
the suEXEC program that comes with Apache to run
these different classes of CGIs as different Linux or Unix
users. This allows you to use operating system file per-
missions to prevent the less-trusted CGIs from accessing
more confidential data. Documentation on suEXEC is
available at http://apache.org/docs/suexec.html.

Analyze and audit CGIs for vulnerabilities.
When writing CGI programs, look at them the way a
cracker would and try to break them. Stop buffer over-
flows by using good programming techniques. An easy
way to determine if the line is larger than the buffer is to
see that it does not end with a newline character, as this
example illustrates:

 #include <stdio.h>
 #include <string.h>

 int c;
 char buf[200];

 if (!fgets(buf, sizeof buf, stdin))
	 error();
 else if (!strchr(buf, ‘\n’)) {
		 /* Read rest of long line. */
	 while ((c = getchar()) != EOF
	 && c != ‘\n’)
		 ;
	 overflow();
 }

Do not use the gets() routine because it does not do
any checking for buffer overflows; use fgets() instead.
Many of the other popular C string functions have similar
weaknesses. The strcpy() function, for example, “lets”
you copy a large buffer into a small buffer, overwriting

unrelated memory. The strncpy() function is an excellent
alternative. A safe way to copy strings is:

	 strncpy(dest_buf, source_buf,
	 sizeof dest_buf);
	 dest_buf[sizeof dest_buf - 1] = ‘\0’;

To detect a problem, one possibility is:

	 if (strlen(source_buf)
	 >= sizeof dest_buf)
	 error();
	 else
	 strcpy(dest_buf, source_buf);

Check for escape sequences, the possibility of a client
issuing Linux or Unix commands (by inserting spaces,
quotes, or semicolons), binary data, calls to other pro-
grams, etc. Often it is safer to have a list of allowed char-
acters rather than determining each unsafe character.

The following C code may be used to process a field in
which the client should supply his or her name. In this
example, the calling process supplies a NUL-terminated
string; this routine returns 0 if the string is a legal name,
and -1 otherwise. The second argument specifies the
maximum legal string allowed, including the terminating
NUL byte. Note that the calling routine must be careful to
ensure that its buffer did not overflow. I chose clear code
over slightly more efficient code.

#include <string.h>

 char okname[] = “ .’-,abcdefghijklmnopqrstuvwxyz”
	 “ABCDEFGHIJKLMNOPQRSTUVWXYZ”;

 /* Return 0 on legal names, -1 otherwise. */
 legal(char *name, int maxlen)
 {
	 if (!name || !*name
	 || strlen(name) >= maxlen)
		 return -1;
	 while (*name)
		 if (!strchr(okname, *name++))
			 return -1;
	 return 0;
 }

The Seven Deadly Sins of Linux Security

ACM QUEUE May-June 2007 45 more queue: www.acmqueue.com

Many system break-ins relating to Linux and Unix
Web servers happen via insecure CGIs.

Implement rings of security in CGIs.
Try to design your application so that even if it finds a
CGI vulnerability, the system is protected from major
damage. One solution is to have CGIs just be front
ends for a solidly written server running on a different
machine. The more hurdles a hacker must jump to reach
the goal, the more likely it is that he or she will stumble.

Watch for bug reports in third-party CGIs and inspect
their code.
If you use third party-supplied CGI scripts (such as
shopping carts), you should subscribe to the appropriate
mailing lists and watch for security bulletins. If possible,
get the source code and review it. If you do not know the
language, then get someone who does to review it.

Many CGIs, both commercial and open source, have
severe security holes that are well known to the hacker
community. Many locally written CGIs have security
vulnerabilities because the programmers who write them
typically have no training in writing secure code and such
code is rarely audited.

Avoid creating and using set-UID and set-GID programs
to the maximum extent possible, especially programs set-
UID to root (and try real hard).
Many system programs run as root. Frequently all these
programs need to be set-UID to run as some user to gain
access to data that should not be world accessible. Other
programs need to be set-UID to root only when starting
to open a low network port for listening or to change its
privileges to that of a particular user. In this case, the pro-
gram then should give up root privileges. Apache, named,
and ftpd were enhanced several years ago to do this for
better security. Different programs may need to be set-
UID to different users to protect them from each other.

Do not keep clients’ confidential data on the Web server.
Avoid storing users’ privileged data (credit card numbers,
financial details, mailing addresses and phone numbers,
etc.) on the same machine as the Web server. This separa-
tion will force a hacker to crack two systems instead of
just one to get this data.

Do not include users’ confidential data (credit card
numbers, financial details, mailing addresses and phone
numbers, session ID, etc.) in an URL or cookie.6

Frequently this is done (insecurely) as arguments to a CGI

program. Consider the following example:

 www.abroker.com/cgi-bin/address_change?account=666
 ?passwd=secret&addr=1+Maple+St.&phone=301-688-6524

Some browsers may store this URL (containing confi-
dential data) in a history file. If someone is browsing from
a public terminal, such as a school or library, you could
be liable for careless handling of the data. Similar issues
are present for cookies.

Be very sure that the privileged data that a user supplies
on a form does not show up as the default data for the
next person to “pull down” that form and see.
Yes, this has actually happened.

Always protect the user who types in a password.
Take the user to a secured area prior to this information
being entered and ensure that the password or credit card
number will be encrypted on the system (with https)
before transmission to your server.

sin five: �Insufficient Resources and
Misplaced Priorities

At many organizations, management simply will not
approve sufficient resources to allow sysadmins to provide
good security. It takes many things to achieve a truly
comprehensive security solution. Education, design,
proper implementation, user training, maintenance, and
continual vigilance all are required for an organization
to be secure. Frequently, security is limited to what a sys-
admin is willing to do on his or her own time. Yet, a sys-
admin who is unwilling to spend the time will certainly
be blamed for any violations. This deadly sin concerns
problems that are not the sysadmin’s direct responsibility.
In other words, management will not allow the sysadmin
to make the changes necessary for good security.

This may not be a “technical” problem, but it has been
the cause of break-ins at numerous organizations. Lack
of resources commonly is a result of misplaced priorities.
For example, the following is a common misconception
of those whose organizations have not been broken into:
“The media exaggerates every danger well beyond the
true risk.” Show your manager media accounts of large
companies that have suffered security breaches. If you
shopped at T.J. Maxx or Marshalls in 2006, you probably
received a new credit card number thanks to TJX Cos.,
the parent company, which suffered a security breach
in December. Circuit City suffered a similar breach.
Consider making a present of Bruce Schneier’s excellent

46 May-June 2007 ACM QUEUE rants: feedback@acmqueue.com

book, Secrets and Lies: Digital Security in a Networked World
(Wiley, 2004), to your boss. Secrets and Lies is aimed at
management and limits the tech-speak.

On a number of occasions, I have warned clients about
major security problems only to have them decide that
security was not as important as getting that next release
out or making nonsecurity-related computer improve-
ments. Later, they learned the sad reality—recovering
from a security breach commonly costs 10 times as much
as having implemented good security before the break-
in—and only then did they spend the money to imple-
ment the security.

Furthermore, the estimate of the cost of recovering
from a security breach being 10 times the cost of preven-
tion is only the direct cost. It does not account for the
lost market opportunities for delayed products, the loss
of customers who heard about the security breach and
went elsewhere, and the costs to customers and employ-
ees who could not access your Web site and e-mail during
recovery. It does not account for lost investors and other
consequences of bad publicity, and it most certainly does
not account for the damage done to an IT professional’s
career.

What can be done to resolve insufficient resources and
misplaced priorities? Spend an hour or two a week work-
ing on security as a skunk-works project.7 Demonstrate a
Linux firewall, Web server, or VPN. Show how easy it is to
update Linux software when patches come in, to use ssh
and gpg, to crack most passwords, or attack a Wi-Fi wire-
less network. Do scans of your network from your home
system (using nmap with the -O flag) to show how open
your network is. Install Snort and PortSentry outside of
your firewall (if any) to show how often your network is
attacked.

Make a point of talking with your colleagues to get
detailed accounts of problems that you can then relay
to your management. Have a good consultant or other
trusted outside source do a security audit of your com-
pany and recommend improvements. Giving up leads to
procrastination, and procrastination results in compro-
mised systems. That is the dark side of The Force. Never
give up. Never surrender.8

Misplaced priorities can also mean using Microsoft
because “We are a Microsoft shop,” disregarding that it
may not have sufficient security for servers accessible
from the Internet.

Sin Six: Stale and Unnecessary Accounts
As discussed before, each account is a possible entry point
into the system. A stale account’s password will not be
changed, thereby leaving a hole. If the account has data
that needs to be reassigned, disable the account by put-
ting a * or !! in the ex-user’s password field (after the first
colon) in the /etc/passwd file. This disables logging in via
that account because no password encrypts into either of
these values and shadow password-enabled code under-
stands these sequences. Get things cleaned up as soon as
possible. Make sure that no set-UID or set-GID programs
or publicly readable or writable files containing confiden-
tial data remain in that account.

Issuing the following code

chmod 0 /home/someone
find / -user someone -ls

is a good start. Note that the user may have a mailbox,
files in the print spool directory, accounts in various
applications, etc. that will need to be attended to.

Some of the services you removed (while correcting an
earlier sin) have accounts in the /etc/passwd file. When
you remove that service, make sure that the /etc/passwd
account also is removed or disabled. Some of the notables
are FTP, NFS, uucp, mail, gopher, and news. If you do not
need them, get rid of them.

Sin Seven: Procrastination
In many reports of intrusions the sysadmins say, “I meant
to install... IP Tables... TCP Wrappers... a newer version
of... a firewall... turn off NFS and portmap... stop using
PHP...” Clearly they knew, at least vaguely, what had to be
done but delayed until it was too late.

Sure, you have more responsibilities than time, but
consider setting aside an hour twice a week to upgrade
security. Those hours may come with bag lunches at

The Seven Deadly Sins of Linux Security

When a user will no longer be using the
system, be sure to remove his or her
account from the system quickly. TI

P

ACM QUEUE May-June 2007 47 more queue: www.acmqueue.com

your desk, but that beats a cot in your office so that you
can work around the clock for a week recovering from a
compromise. Sadly, I know of one company where they
did bring in those cots for a number of engineers during
a weeks-long recovery project following a breach. Worse,
they procrastinated on deciding to build a firewall until
after this event. Q

ACKNOWLEDGMENTS
This article is based on RealWorld Linux Security: Intrusion,
Detection, Prevention, and Recovery, second edition, by Bob
Toxen (Prentice Hall PTR, 2003, ISBN 0130464562); chap-
ter 2, section 2, “The Seven Most Deadly Sins.”

Thanks to Prentice Hall PTR for granting permission to
use material from the book in this article. Thanks to Larry
Gee, a very talented programmer, for co-authoring this
section of the book.

References
1. �NFS consists of these daemons and a few more, includ-

ing: rpc.nfsd, rpc.mountd, portmap, rpc.lockd, rpc.
statd, rpc.rquotad, and automounter, scattered among
a number of startup scripts. A cracker process can lie
to portmap and masquerade as a legitimate server.
NFS has had plenty of security bugs in the past, and

its design prevents it from being made secure in many
configurations.

2. �Most recent vulnerabilities are not directly exploitable
remotely on most systems. This means that most sys-
tems are not at risk for remote attack from the Internet.
Many of the vulnerabilities may be taken advantage of
by someone with a regular shell account on the system.
Others are in programs that most people do not use
and that are not set-UID or set-GID and thus are not a
threat.
� This is different from most Windows vulnerabilities
where almost every client system or server using that
major version of Windows is vulnerable to remote
attack over the Internet and thus to complete control
by crackers. We observe that most Windows vulner-
abilities affect all Windows versions released in the
past four years, including Vista. We have recently seen
Vista included with past versions of Windows for sev-
eral remote “root” vulnerabilities.

3. �Subscribe to Bugtraq by sending e-mail to
bugtraq-digest-subscribe@securityfocus.com with
empty subject and content. Subscribe to X-Force’s Alert
by logging on to https://atla-mm1.iss.net/mailman/list-
info/alert.

4. �If you are doing only anonymous FTP, your password is
normally your e-mail address. Unless you are a govern-
ment researcher at Groom Lake (Area 51) and you do
not want to acknowledge the existence of such a facil-
ity, then generally you have nothing to worry about.

5. �Most of the information on Perl presented here is from
Kurt Seifried’s writings.

6. �Fidelity Investments, which manages $900 billion of its
customers’ money, did not follow this advice. In May
2002, it was reported that by changing the digits in the
URL of the page displaying his statement—a three-digit
number—a client saw other clients’ statements.

7. �A skunk-works project is one done in secret without
management approval or knowledge.

8. Thanks, Galaxy Quest.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

BOB TOXEN is a computer and network security consultant
with 33 years of Unix experience and 12 years of Linux expe-
rience. He was one of the 162 developers of Berkeley Unix
and one of the four creators of Silicon Graphics’ Unix. He has
been an advisor to the George. W. Bush administration on
computer issues at the five principal intelligence agencies.
© 2007 ACM 1542-7730/07/0500 $5.00

The Linux 2.6 kernel prior to 2.6.17.4
has a nasty local root vulnerability where
anyone with a shell account, possibly
via ssh or abusing a Web server CGI pro-
gram, can make himself or herself root.
See CVE-2006-2451.

Are any of your systems vulnerable to
this right now? I thought so.

A partial fix is to issue the command:

 chmod 700 /etc/cron*/.

A better solution is to write a kernel-
loadable module to prevent use of the
prctl() system call by other than root.

Of course, the only full solution is to
upgrade your kernel. If the system is at a
remote office or colocation facility where
there are no experienced sysadmins,
then good luck if the new kernel does
not boot.

TI
P

