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The Network Simplex Method

The Min Cost Flow LP: Let network G =

(N,A) be given, with supplies/ demands

bi, i ∈ N , costs cij (positive or negative),

and capacities uij (possibly ∞) (i, j) ∈ A.

Recall the description of the Min Cost

Flow Problem:

min z(x) =
∑

(i,j)∈A
cijxij

(NP )
∑

j∈A(i)

xij −
∑

j∈B(i)
xji = bi i ∈ N

0 ≤ xij ≤ uij (i, j) ∈ A

Since this is a linear program, it can be solved

using the Simplex Method. The Network

Simplex Method is a special implementation

of the Simplex Method which makes use of

the network structure to significantly stream-

line the computational effort.
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Network LP:

min z = x13 + 2x21 + 2x24 + 8x32 + 4x35 + 3x54 + x64 + 2x65

Node 1: x13 − x21 = 1
Node 2: x21 + x24 − x32 = 2
Node 3: −x13 + x32 + x35 = 3
Node 4: −x24 − x54 − x64 = −7
Node 5: −x35 + x54 − x65 = −3
Node 6: x64 + x65 = 4

x13 ≤ 2 x21 ≤ 2 x24 ≤ 5 x32 ≤ 5 x35 ≤ 4 x54 ≤ 3 x64 ≤ 1 x65 ≤ 6



Matrix-Vector Form of (NP )

min cx

Nx = b

0 ≤ x ≤ u

where N is the node-arc incidence matrix for
G and c, b, and u are the vectors of costs, sup-
plies/demands, and capacities, respectively.

Assumptions:

(A1) G is connected (in the undirected sense)

(A2)
∑
i∈N

bi = 0

Fact: If the second assumption is not satis-
fied, the equality system Nx = b is incon-
sistent. If it is satisfied, then at least one
row is redundant and can be removed.

It will turn out that the choice of the row to
remove is irrelevant, so we will remove the
row corresponding to some arbitrary root
node s. Let Ns be the resulting matrix.



Spanning Trees

Spanning tree: Set of edges which connects

every pair of nodes of G and has no cycles

(both in the undirected sense).

Properties of Spanning Trees (from first as-

signment):

(a) every spanning tree has exactly n−1

arcs;

(b) every spanning tree has at least two

end nodes (nodes with only one ad-

jacent arc);

(c) every pair of nodes in a spanning

tree is connected by a unique path;

(d) addition of any arc to a spanning

tree results in a graph containing ex-

actly one cycle.



Bases for Ns

A basis for Ns is any matrix BT consisting of

set T of n − 1 columns of Ns so that for

any choice of bi, i ∈ N\s, there is a unique

solution to the (n− 1)× (n− 1) system

(∗) BT x = b

(Note that this is equivalent to saying the

BT is a nonsingular matrix.) The corre-

sponding variables are called basic vari-

ables.

Basis Lemma: Let T be a set of arcs of G,

and let BT be the corresponding set of

columns of Ns. Then BT is a basis for Ns

if and only if T is a spanning tree for

G.



Proof of the Basis Lemma

First suppose that T is not a spanning tree.

Case 1: Suppose that T is not connected, that
is there is some node t that is not con-
nected to s by a path. Consider the right-
hand-side b with bt = −1 and bi = 0,
i ∈ N \ {s, t}. Then clearly there can be
no solution to (∗).

Case 2: Suppose that T contains a cycle

W : v0, e1, v1, . . . , vk−1, wk, vk = v0

with ei = (vi−1, vi) or (vi, vi−1). Now let
bi = 0 for all i. For any λ, consider the
solution x having

xij =


+λ (i, j) a forward arc of C
−λ (i, j) a backward arc of C
0 (i, j) not on C

for any λ this clearly satisfies (∗), and so
(∗) has more than one solution.

In either case, (∗) will not have a unique solu-
tion, so that this direction of the lemma
is proven.



Computing a Basic Solution

Now suppose that T is a spanning tree. To
complete the Basis Lemma, we need to show
how to compute unique flow values for x on
the arcs of T which will satisfy the flow equa-
tions. For any set of flow values xij, (i, j) ∈ A,
recall the imbalance of i is defined

ei = bi −
∑

j∈A(i)

xij +
∑

j∈B(i)
xji

Algorithm Compute-Flows

Initialize: Set ei = bi, i ∈ A and S = T .

while S ̸= ∅ do
Let i ̸= s be an end node of S, with a =

(i, j) or (j, i) the associated unique arc
of S adjacent to i.

If a = (i, j) assign xij = ei, and if a =
(j, i) assign xji = −ei.

Remove a and i from S and add ei to ej.

end while
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Fact: Algorithm Compute-Flows correctly com-

putes the unique basic solution associ-

ated with spanning tree T .

Proof: By construction the given solution will

satisfy the node equations (What about

s?). Further, since the assignment of

values to arcs of T is forced at each

stage of the algorithm, then the given

solution is in fact unique.



Bases for (NP )

In general, a basis for (NP ) is represented by
a triple (T ,L,U) of sets of arcs of G, where T
is the spanning tree of basic variables, L is the
set of variables at their lower bounds, and U
is the set of variables at their upper bounds.

Steps for finding the basic solution corre-

sponding to (T ,L,U):

1. Set xij = 0 for all (i, j) ∈ L and xij =
uij for all (i, j) ∈ U.

2. Compute the resulting imbalances ei.
3. Use Compute-Flows to determine the

values of x on the arcs of the spanning
tree T based on the imbalances com-
puted in (2). This is a basic feasible
solution iff the corresponding tree-arc
values lie between their lower and up-
per bounds.

basic feasible solution: a basic solution x with
0 ≤ xij ≤ uij for all (i, j) ∈ T .



The Residual Network for a

Basic Solution

The residual network is constructed the

standard way. Note that arcs in L will ap-

pear in the same direction as in G, arcs

in U will appear in the opposite direction

as they do in G, and arcs in T will (gen-

erally) be represented by two arcs.
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Residual network for starting basis

T = {(2,1), (3,2), (2,4), (3,5), (6,5)},
U = {(1,3), (5,4)}, and L = {(6,4)}



Computing Node Potentials

We compute node potentials for Gπ(x) in such
way that each arc (i, j) in T satisfies

cij = πi − πj

This can be done by using the following
labeling scheme on T :

Label πs = 0.
An arc (i, j) is admissible if it is in T

and exactly one of its endpoints is
labeled. For any admissible arc, set

πj = πi − cij i labeled, j unlabeled
πi = πj + cij j labeled, i unlabeled

Fact 1: The above labeling scheme can be
performed in O(n) time using FINDPATH,
and uniquely determines the correct val-
ues for π.

Computing Costs: For each (i, j)\∈ T set
cπij = cij − πi + πj.

Fact 2: cπij = 0 for all arcs in T



The Residual Network Gπ(x)

for the Example

ijr

ijr

π
ijc

iπ

,
1

2 4

6

3

s
[0] 1

1
4

1

3

5
2

2

2
42,$−10

3,$3

1,−$7

[1] [−1]

2

[5]

[7]

[9]

Fact 3: The value of the reduced cost on

nonbasic arc (i, j) is equal to the sum of the

costs of the arcs of G(x) in the unique cycle

W created by adding (i, j) to T , directed con-

sistent with (i, j). Thus nonbasic arcs in Gπ(x)

having negative reduced costs correspond to

negative cycles in Gπ(x).



Performing the Pivot

Choice of entering variable: arc (i, j) with neg-
ative (heuristically, most negative) reduced
cost. If all reduced costs are nonnegative,
STOP, current solution is optimal.

Modifying Flow: Push flow around the unique
directed cycle W induced by (i, j) up to
the minimum residual capacity around W ,
modifying x accordingly. If residual capac-
ities around W are all ∞, STOP, problem
is unbounded.

New basic solution: Let (k, l) be the arc of
W having minimum residual capacity.
1. Move arc (i, j) into T .
2. If (k, l) is an arc in G, then move (k, l)

into U
3. If (l, k) is an arc in G, then move (l, k)

into L

Note: (k, l) could actually be the arc (i, j) it-
self, in which case T would not change
but (i, j) would move from L to U or vice
versa.



Example

Starting basis: T = {(2,1), (3,2), (2,4), (3,5), (6,5)},
L = {(6,4)}, U = {(1,3), (5,4)}. Arcs in L are in blue,

arcs in U are in red.
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The Phase II Network Simplex

Method

Initialize: Start with basis (T ,L,U) correspond-

ing to a basic feasible solution. Com-

pute basic flow values, node potentials,

and reduced costs, and form residual net-

work Gπ(x).

while there are nonbasic arcs with negative re-

duced costs in Gπ(x), perform a pivot:

(i) Choose arc (i, j) with cπij < 0.

(ii) Find the associated directed cycle W

obtained by adding (i, j) to T , and push

flow around W up to the minimum resid-

ual capacity.

(iii) Adjust (T ,L,U), recompute x and π,

and form new residual network Gπ(x).



Correctness of Phase II Simplex

Method

1. After every pivot, the current basis is fea-

sible.

2. If there are no nonbasic arcs with nonneg-

ative reduced costs, then the current solu-

tion is optimal.

3. Pushing flow around the directed cycle W

induced by adding a negative-reduced-cost

nonbasic arc to T will always result in a

strictly smaller cost flow in G.

Result: The number of pivots performed in

the Phase II Simplex Algorithm is at most 2mCU .



Degenerate Pivots, Cycling, and

Finiteness of NSA

The problem with the Simplex Method as given

above is that there may be no directed cy-

cle W induced by adding the negative-reduced-

cost arc (i, j) to T . This will occur if the basis

(T ,L,U) is degenerate, that is, the computed

value xij of a basic arc (i, j) may have xij = 0

or xij = uij. This means that one of the two

arcs corresponding to (i, j) may be missing in

Gπ(x) and thus might prevent the directed cy-

cle W from existing.

We could adjust for this by making degener-

ate pivots, that is, adding an arc with zero

residual capacity along W in the appropriate

direction. This means that we will be pushing

zero flow around W , but at least the basis

changes and (hopefully) after a finite number

of pivots we will be able to find a “nondegen-

erate” cycle W .



A “Bland’s Rule” for Breaking Cycles

Let s be an arbitrarily chosen root node, from
which all basis trees are oriented.

Strongly feasible basis: A feasible basis for
which any degenerate tree arc in Gπ(x) —
that is, tree arc whose oppositely-directed
partner is missing — always points to-
ward the root s.

We will maintain strongly feasible bases through-
out the algorithm. Let T be the strongly fea-
sible basis, with associated flow x and reduced
cost values cπij in Gπ(x).

Entering arc: Arc (i, j) in Gπ(x) with cπij < 0.

Now let W be the cycle in Gπ(x) obtained by
adding (i, j) to T , oriented in the direction of
the arc (i, j). Then the only backward arcs in
W will be the degenerate arcs. The apex of
W will be the first common vertex in (i, s) and
(j, s) paths in T .

Leaving arc: If there are backward arcs, then
choose the last backward arc encountered
in a traversal of W from its apex.



$W$

apex

entering arc

leaving arc

s

v1 v2 v3

v0

v4 v5 v6

i

j

Proposition: The pivot rule given above guar-

antees that the basis trees remain strongly

feasible, and that there can be only a

finite number of consecutive degenerate

pivots.

Corollary: The network simplex method, us-

ing the above pivot rule, finds an optimal

solution in a finite number of pivots.



Polynomial Network Simplex

Implementations

• If all data are integer, then the number
of pivots taken by the simplex algorithm
using the above rule is O(nCU), which is
pseudopolynomial.

• Polynomial-time implementations of the sim-
plex algorithms have been developed for
shortest path, max flow, and assignment
problems.

• The simplex algorithm can be embedded
in a cost-scaling procedure for general min
cost flow problems, in which the number of
pivots in each scaling phase is polynomial.

• The problem of finding a pivot rule that
leads to a polynomial number of pivots in
the unscaled version of the simplex method
is still an open problem.



The Phase I Network Simplex

Method

To get a starting basis for a Network LP, we
form an artificial Min Cost Flow LP whose
optimal solution will result in a feasible start-
ing basis for (NP ). The steps of the Phase I
Network Simplex Method are as follows:

1. Choose an arbitrary root node s, and for each node
i add artificial arc

(i, s) if bi ≥ 0.

(s, i) if bi < 0, and

2. Set the initial flow on these artificial arcs to the
absolute value of the supply or demand at the node
i, and set the capacity to ∞. Set T = the set of
artificial arcs, L = the set of original arcs, and U = ∅.

3. Perform the Network Simplex Method on this net-
work, using a cost of 1 on each artificial arc, and a
cost of 0 on each original arc.

4. If the optimal solution has artificial arcs with nonzero
flow, then the original flow problem is infeasible.
Otherwise delete all artificial arcs and continue with
the Network Simplex Method, using the final basis
and arc costs equal to those of the original LP.
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