Lecture 14:

T he Network
Simplex Method

AM&E&O Chapter 11



The Network Simplex Method

The Min Cost Flow LP: Let network G =
(N, A) be given, with supplies/ demands
bj, 1 € N, costs Cij (positive or negative),
and capacities u;; (possibly co) (¢,5) € A.
Recall the description of the Min Cost
Flow Problem:

(4,5)eA

(NP) Z Tijj — Z ajji:biiEN
JEA() JEB(7)

0 <z <wuy; (4,5) €A

Since this is a linear program, it can be solved
using the Simplex Method. The Network
Simplex Method is a special implementation
of the Simplex Method which makes use of
the network structure to significantly stream-
line the computational effort.



Example:

Network LP:

min z = 13 + 2:1:21 —|— 2:1324
Node 1: r13 — 21
Node 2: x21 + T24
Node 3: —xi3
Node 4: —XI24
Node 5:
Node 6:

r13 < 2 x21 < 2 x24 <5
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Matrix-Vector Form of (INP)

min cx

where N is the node-arc incidence matrix for
GG and ¢, b, and v are the vectors of costs, sup-
plies/demands, and capacities, respectively.

Assumptions:

(A1) G is connected (in the undirected sense)

(A2) > b; =0

€N

Fact: If the second assumption is not satis-
fied, the equality system Nz = b is incon-
sistent. If it is satisfied, then at least one
row is redundant and can be removed.

It will turn out that the choice of the row to
remove is irrelevant, so we will remove the
row corresponding to some arbitrary root
node s. Let N, be the resulting matrix.



Spanning Trees

Spanning tree: Set of edges which connects
every pair of nodes of GG and has no cycles
(both in the undirected sense).

Properties of Spanning Trees (from first as-
signment):

(a) every spanning tree has exactly n—1
arcs;

(b) every spanning tree has at least two
end nodes (nodes with only one ad-
jacent arc);

(c) every pair of nodes in a spanning
tree is connected by a unique path;

(d) addition of any arc to a spanning
tree results in a graph containing ex-
actly one cycle.



Bases for N

A basis for N is any matrix By consisting of
set T of n — 1 columns of N5 so that for
any choice of b;, ¢ € N\s, there is a unique
solution to the (n —1) x (n — 1) system

(%) Brz =b

(Note that this is equivalent to saying the
B is a nonsingular matrix.) The corre-
sponding variables are called basic vari-
ables.

Basis Lemma: Let 7 be a set of arcs of G,
and let By be the corresponding set of
columns of Ns. Then By is a basis for N
if and only if 7 is a spanning tree for
G.



Proof of the Basis Lemma

First suppose that 7 is not a spanning tree.

Case 1: Suppose that 7 is not connected, that
is there is some node t that is not con-
nected to s by a path. Consider the right-
hand-side b with b4 = —1 and b; = O,
i € N\ {s,t}. Then clearly there can be
no solution to (x).

Case 2: Suppose that 7 contains a cycle

W vg,e1,v1,.-.,Vp_1, W, Vi = VQ

with e; = ('Ui—lavz') or (Uz'avz'—l)- Now let
b = 0 for all +. For any X\, consider the
solution x having

+X (4,4) a forward arc of C
rii =4 —A (i,7) a backward arc of C
O (4,7) not on C

for any X this clearly satisfies (%), and so
(x) has more than one solution.

In either case, (x) will not have a unique solu-
tion, so that this direction of the lemma
IS proven.



Computing a Basic Solution

Now suppose that 7 is a spanning tree. To
complete the Basis Lemma, we need to show
how to compute unique flow values for = on
the arcs of 7 which will satisfy the flow equa-
tions. For any set of flow values z;;, (i,7) € A,
recall the imbalance of 7 is defined

e;=bi— ), wijt+ D wji

jeA(7) jeB(1)

Algorithm Compute-Flows

Initialize: Sete; =b;, i€ Aand S=T.

while S = () do
Let ¢« = s be an end node of &, with a =
(7,7) or (4,%) the associated unique arc
of § adjacent to s.
If a = (4,5) assign z;; = e;, and if a =
(j, 7,) assign Tj; = —€;.
Remove a and ¢ from & and add e; to e;.

end while



Example

Fact: Algorithm Compute-Flows correctly com-
putes the unique basic solution associ-
ated with spanning tree 7.

Proof. By construction the given solution will
satisfy the node equations (What about
s?). Further, since the assignment of
values to arcs of 7T is forced at each
stage of the algorithm, then the given
solution is in fact unique.



Bases for (NP)

In general, a basis for (NP) is represented by
a triple (7, L,U) of sets of arcs of GG, where T
IS the spanning tree of basic variables, L is the
set of variables at their lower bounds, and U
IS the set of variables at their upper bounds.

Steps for finding the basic solution corre-
sponding to (7,L,U):

1. Set z;; = 0 for all (i,5) € £ and z;; =
u;; for all (i,5) € U.

2. Compute the resulting imbalances e;.

3. Use Compute-Flows to determine the
values of x on the arcs of the spanning
tree 7 based on the imbalances com-
puted in (2). This is a basic feasible
solution iff the corresponding tree-arc
values lie between their lower and up-
per bounds.

basic feasible solution: a basic solution x with
0< T < U5 for all (i,5) € T.



T he Residual Network for a

Basic Solution

The residual network is constructed the
standard way. Note that arcs in £ will ap-
pear in the same direction as in &, arcs
in U will appear in the opposite direction
as they do in G, and arcs in T will (gen-

erally) be represented by two arcs.

A

)
Q=

Residual network for starting basis

T ={(2,1),(3,2),(2,4),(3,5),(6,5)},
U = {(1,3),(5,4)}, and £ = {(6,4)}



Computing Node Potentials

We compute node potentials for G™(x) in such
way that each arc (¢,4) in T satisfies

Cij =7TZ'—7T]'

This can be done by using the following
labeling scheme on T

Label s = 0.

An arc (i,7) is admissible if it is in T
and exactly one of its endpoints is
labeled. For any admissible arc, set

T
T

m; — ¢;; ¢ labeled, j unlabeled
7rj—|—cz-j 7 labeled, 2 unlabeled

Fact 1: The above labeling scheme can be
performed in O(n) time using FINDPATH,
and uniquely determines the correct val-
ues for .

Computing Costs: For each (4,j)& T set

w— . . .

Fact 2: c% = O for all arcs in T



The Residual Network G™(x)

for the Example

Fact 3: The value of the reduced cost on
nonbasic arc (i,7) is equal to the sum of the
costs of the arcs of G(x) in the unique cycle
W created by adding (7,5) to 7, directed con-
sistent with (7,5). Thus nonbasic arcs in G™(x)
having negative reduced costs correspond to
negative cycles in G™(x).



Performing the Pivot

Choice of entering variable: arc (7, j) with neg-
ative (heuristically, most negative) reduced
cost. If all reduced costs are nonnegative,
STOP, current solution is optimal.

Modifying Flow: Push flow around the unique
directed cycle W induced by (7,5) up to
the minimum residual capacity around W,
modifying x accordingly. If residual capac-
ities around W are all oo, STOP, problem
is unbounded.

New basic solution: Let (k,1) be the arc of
W having minimum residual capacity.
1. Move arc (i,7) into T.
2. If (k,1) is an arc in GG, then move (k,1)
into U
3. If (I,k) is an arc in GG, then move (1,k)
into £

Note: (k,l) could actually be the arc (4,75) it-
self, in which case 7 would not change
but (7,5) would move from £ to U or vice
versa.



Example

Starting basis: 7 = {(2,1),(3,2),(2,4),(3,5),(6,5)},
L={(06,4)}, U={(1,3),(5,4)}. Arcs in L are in blue,
arcs in U are in red.
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The Phase II Network Simplex
Method

Initialize: Start with basis (7, L,U) correspond-
ing to a basic feasible solution. Com-
pute basic flow values, node potentials,
and reduced costs, and form residual net-
work G™(x).

while there are nonbasic arcs with negative re-
duced costs in G™(x), perform a pivot:

(1) Choose arc (i,5) with i < 0.

(#7) Find the associated directed cycle W
obtained by adding (i,7) to 7, and push
flow around W up to the minimum resid-
ual capacity.

(#41) Adjust (7,L,U), recompute x and ,
and form new residual network G™(x).



Correctness of Phase II Simplex
Method

1. After every pivot, the current basis is fea-
Sible.

2. If there are no nonbasic arcs with nonneg-
ative reduced costs, then the current solu-
tion is optimal.

3. Pushing flow around the directed cycle W
induced by adding a negative-reduced-cost
nonbasic arc to 7 will always result in a
strictly smaller cost flow in G.

Result: The number of pivots performed in
the Phase Il Simplex Algorithm is at most 2mCU.



Degenerate Pivots, Cycling, and
Finiteness of NS A

The problem with the Simplex Method as given
above is that there may be no directed cy-
cle W induced by adding the negative-reduced-
cost arc (4,7) to 7. This will occur if the basis
(T, L,U) is degenerate, that is, the computed
value z;; of a basic arc (i,j) may have z;; =0
or z;; = wu;j. This means that one of the two
arcs corresponding to (7,7) may be missing in
G™(x) and thus might prevent the directed cy-
cle W from existing.

We could adjust for this by making degener-
ate pivots, that is, adding an arc with zero
residual capacity along W in the appropriate
direction. This means that we will be pushing
zero flow around W, but at least the basis
changes and (hopefully) after a finite number
of pivots we will be able to find a “nondegen-
erate” cycle W.



A “Bland’s Rule” for Breaking Cycles

Let s be an arbitrarily chosen root node, from
which all basis trees are oriented.

Strongly feasible basis: A feasible basis for
which any degenerate tree arc in G™(x) —
that is, tree arc whose oppositely-directed
partner is missing — always points to-
ward the root s.

We will maintain strongly feasible bases through-
out the algorithm. Let 7 be the strongly fea-
sible basis, with associated flow z and reduced

T3 T
cost values cf; in G ().

Entering arc: Arc (4,5) in G™(x) with i < 0.

Now let W be the cycle in G™(z) obtained by
adding (¢,5) to 7, oriented in the direction of
the arc (¢,7). Then the only backward arcs in
W will be the degenerate arcs. The apex of
W will be the first common vertex in (i,s) and
(4,s) paths in T.

Leaving arc: If there are backward arcs, then
choose the last backward arc encountered
in a traversal of W from its apex.



leaving arc C

apex
entering arc

¢
g

Proposition: The pivot rule given above guar-
antees that the basis trees remain strongly
feasible, and that there can be only a
finite number of consecutive degenerate
pivots.

Corollary: The network simplex method, us-
ing the above pivot rule, finds an optimal
solution in a finite number of pivots.



Polynomial Network Simplex
Implementations

If all data are integer, then the number
of pivots taken by the simplex algorithm
using the above rule is O(nCU), which is
pseudopolynomial.

Polynomial-time implementations of the sim-
plex algorithms have been developed for
shortest path, max flow, and assignment
problems.

The simplex algorithm can be embedded
in @ cost-scaling procedure for general min
cost flow problems, in which the number of
pivots in each scaling phase is polynomial.

The problem of finding a pivot rule that
leads to a polynomial number of pivots in
the unscaled version of the simplex method
is still an open problem.



The Phase I Network Simplex
Method

To get a starting basis for a Network LP, we
form an artificial Min Cost Flow LP whose
optimal solution will result in a feasible start-
ing basis for (NP). The steps of the Phase I
Network Simplex Method are as follows:

1.

4.

Choose an arbitrary root node s, and for each node
1 add artificial arc

(i,s) if b; > 0.
(s,7) if b; <0, and

. Set the initial flow on these artificial arcs to the

absolute value of the supply or demand at the node
7, and set the capacity to co. Set 7 = the set of
artificial arcs, £ = the set of original arcs, and U4 = 0.

Perform the Network Simplex Method on this net-
work, using a cost of 1 on each artificial arc, and a
cost of O on each original arc.

If the optimal solution has artificial arcs with nonzero
flow, then the original flow problem is infeasible.
Otherwise delete all artificial arcs and continue with
the Network Simplex Method, using the final basis
and arc costs equal to those of the original LP.



Example
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