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Abstract

Autonomous driving has been gaining more and more attention in the last decades,
thanks to its positive social-economic impacts including the enhancement of traf-
fic efficiency and the reduction of road accidents. A number of research institutes
and companies have tested autonomous vehicles in traffic, accumulating tens of
millions of kilometers traveled in autonomous driving. With the vision of massive
deployment of autonomous vehicles, researchers have also started to envision coop-
erative strategies among autonomous vehicles. This thesis deals with the control
architecture design of individual autonomous vehicles and cooperative autonomous
vehicles. Model Predictive Control (MPC), thanks to its efficiency and versatility,
is chosen as the building block for various control architectures proposed in this
thesis. In more detail, this thesis first presents a classical hierarchical control archi-
tecture for individual vehicle control that decomposes the controller into a motion
planner and a tracking controller, both using nonlinear MPC. In a second step, we
analyze the inability of the proposed planner in handling logical constraints raised
from traffic rules and multiple maneuver variants, and propose a hybrid MPC based
motion planner that solves this issue. We then consider the convoy control prob-
lem of autonomous vehicles in which multiple vehicles maintain a formation during
autonomous driving. A hierarchical formation control architecture is proposed com-
posing of a convoy supervisor and local MPC based vehicle controllers. Finally, we
consider the problem of coordinating a group of autonomous vehicles at an intersec-
tion without traffic lights. A hierarchical architecture composed of an intersection
controller and multiple local vehicle controllers is proposed to allow vehicles to cross

the intersection smoothly and safely.

Keywords: autonomous driving, cooperative autonomous driving, model predic-
tive control, hybrid model predictive control, motion planning, formation control,

autonomous intersection management
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CHAPTER 1

Introduction

1.1 Background and motivations

1.1.1 Autonomous driving

Figure 1.1: Autonomous vehicles of KIT-Mercedes-Benz (left) and Google (right).
Courtesy of Mercedes-Benz and Google.

Autonomous driving has been gaining impetus in the last few years, thanks to
its foreseen potential for increasing traffic efficiency and reducing the number of
road accidents. Various research institutes (e.g. Carnegie Mellon University |3],
Karlsruhe Institute of Technology [4]) and companies (e.g. BMW [5], Google [6],
PSA [7]) have showcased prototypes of autonomous cars (see Fig. 1.1 for example),
demonstrating the enthusiasm and expectations of people towards this new technol-
ogy. A recent study suggests that up to 50% of road vehicles may be automated by
2030 [8].

Autonomous driving requires three major components (Fig. 1.2): perception and
localization, behavior planning and vehicle control. We briefly introduce them in

the following paragraphs:

e The perception system uses various sensors (radar, lidar, camera, ultrasound,
etc.) to retrieve environmental information like lane markings, traffic signals,
static obstacles, dynamic obstacles, etc. The information is then digitized
and represented in a local dynamic map that provide interfaces to other mod-

ules. The positioning of the ego vehicle in the local dynamic map is achieved
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Figure 1.2: Autonomous driving: major components.

through the localization system, which can consist of GPS, cameras, lidars or

combinations of them.

e The behavior planning component is responsible for high-level decision making

and behavior generation. It sets up driving modes (scenarios) and configures

the controller of the autonomous vehicle accordingly. Typical scenarios in-

clude lane change, intersection crossing, overtaking, speed regulation due to

exceptional events, efc..

e The vehicle control component is responsible for guiding vehicles to proceed

while satisfying vehicle dynamic constraints and avoiding obstacles. Although

there exists single-level designs for the vehicle control [9, 10], due to the com-

plexity of the problem, the vehicle control component is usually decomposed

into two levels: a motion planner for high level generation of trajectories and

a tracking controller to follow these reference trajectories. Note that in some

literature, motion planner and tracking controller may also be considered sep-

arately as two components for the autonomous vehicle.

1.1.2 Control framework for autonomous driving

In this thesis, we mainly consider the vehicle control component. A considerable

amount of literature (see surveys [11, 12]) can be found on this topic. As mentioned

before, most literature proposes to use hierarchical control structures |13, 14, 15, 16,

17], with a high-level motion planner to generate dynamically feasible trajectories

that avoids all obstacles, and a low-level tracking controller to control the vehicle to

track the reference trajectories. Motion planning is computationally intensive due

to obstacles and constraints on vehicle dynamics, and replanning is usually done at
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Figure 1.3: Multiple maneuver variants in an obstacle avoidance scenario.

a relatively lower frequency (5Hz to 10 Hz). The tracking controller, on the other
hand, runs at a higher frequency (> 20 Hz) to handle highly nonlinear dynamics of
the vehicle.

Control designs based on Model Predictive Control (MPC) [18, 19, 20| have
attracted increased attention due to their ability to efficiently explore the state
space using the gradient information. MPC relies on iteratively formulating and
solving constrained, finite horizon optimal control problems, generally solved using
nonlinear optimization techniques. Because of the predictive nature of MPC, each
optimization yields an optimal control trajectory for the given prediction horizon as
well as an optimal system trajectory (the expected evolution of the system in the
prediction horizon). This specificity of MPC makes it suitable for both the motion
planning and the tracking control of autonomous vehicles.

Motion planning for autonomous vehicles consists of two distinct components: a
continuous component raised from the vehicle dynamics and usually represented by
differentiable constraints, and a discrete component raised from the driving context
usually formulated as non-differentiable constraints involving binary variables (also
referred to as logical constraints). In more detail, there are two main sources of the
discrete component. The first source is traffic rules and expected driving behaviors
with if-else structure such as: “if a vehicle is on a speed bump, then it must drive
slowly”. The second source is related to the existence of multiple maneuver variants
during on-road driving. For example, Fig. 1.3 illustrates an obstacle avoidance
scenario for autonomous vehicles. There are four possible maneuvers in this scenario,
enumerated as LL, LR, RL, and RR if we use "L" to represent the avoidance by the
left of an obstacle and "R" to represent the avoidance on the right-hand.

Nonlinear MPC based motion planners proposed in previous work [18, 19, 20]
handle well the continuous component while are ill-suited to take the discrete com-
ponent into account. The first issue is that nonlinear MPC based methods rely on
continuous, gradient-based optimization algorithms that cannot handle logical con-
straints. Moreover, gradient-based optimization algorithms can be trapped in a local
optimum corresponding to one maneuver choice, while various maneuver variants
need to be explored in order to find the global optimum. To handle the first issue,

several methods [19, 2, 21] have been proposed to approximate non-differentiable
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constraints by differentiable non-linear functions. Nevertheless, such approxima-
tions increase the computational burden. To cope with multiple local optima, some
authors [19] propose to heuristically choose a maneuver choice that is likely to be the
best one. However, they provide no guarantee regarding the global optimality and
the mere problem of designing efficient heuristics is challenging by itself, especially
in complex driving situations.

To sum up, MPC is a promising technique for the control design of autonomous
vehicles. However, previously proposed MPC designs are incapable of handling the
discrete component of the motion planning problem for on-road autonomous driving.

In consequence, one challenge of this thesis is to solve the following problem:

Problem 1. How to design an MPC based control framework for autonomous driv-

ing that can take into account both differentiable and logical constraints?

1.1.3 Cooperative autonomous driving

With the vision of mass deployment of autonomous vehicles, cooperative strategies
for groups of autonomous vehicles start to attract attentions from both automotive
industry and research institutions [22, 23, 8] since they may further amplify the
benefits of individual autonomous driving.

A major enabler of cooperative autonomous driving is Vehicle-to-Vehicle (V2V)
and Vehicle-to-Infrastructure (V2I) communication technologies 24| that allow ve-
hicles to exchange information with each other and with the infrastructure. Signif-
icant research efforts [25, 26] have been made in increasing bandwidth, improving
reliability and reducing latency for V2V /V2I communications.

Built upon the communication, two categories of cooperative strategies for au-
tonomous vehicles have been proposed:

Cooperative perception allows the exchange of perception data locally ac-
quired by each autonomous vehicles. The perception data can either be raw sensor
data from radar, camera, and other sensors, or fused data that contains a list of
detected objects as well as their shapes, positions and predicted trajectories [27].
Cooperative perception extends the sensing capability of individual vehicles to the
V2V /V2X communication range and reduces blind spots that contain security risks.

Cooperative control allows autonomous vehicles to coordinate their trajecto-
ries for achieving specific goals. A widely studied form (PATH [22], CyberCar-2 [23],
CHAUFFEUR I & IT [28] and SARTRE [29]) of cooperative control is platooning,
in which a group of vehicles forms a linear formation to reduce fuel consumption
and enhance road throughput [30]. Cooperative control is usually built on the top

of cooperative perception as vehicles usually exchanges their intended trajectories
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to better maneuver cooperatively.
In this thesis, we mainly consider cooperative control of autonomous vehicles.
More specifically, we consider two special forms of cooperation: convoy and au-

tonomous intersection management.

Figure 1.4: A convoy formation in GCDC’16. Courtesy of -<GAME project.

Convoy is conceived as an extension of platoon that allow not only longitudi-
nal but also lateral coordination of vehicles. It is firstly defined in the European
Project AutoNET2030 [8] as multiple cooperative vehicles spreading over multiple
lanes maintaining a pre-designed formation. In the Grand Cooperative Driving
Challenge 2016', the convoy concept has been demonstrated with a group of het-
erogeneous vehicles spreading over two lanes. Vehicles maintained pre-defined lon-
gitudinal and lateral offsets with each other and the formation was modified when
necessary in a coordinated way (Fig. 1.4). We expect that convoys may find appli-
cations in lane-change assistances, protection of VIP vehicles, snow plowing, and in
other cooperative tasks.

Autonomous Intersection Management (AIM) system (Fig. 1.5) coordinates a
group of autonomous vehicles at an intersection without traffic lights [32, 33, 34].
In an AIM system, autonomous vehicles cooperate with an intersection controller
and/or with each other to cross the intersection without collision. It is shown in [33]
that Autonomous Intersection Management (AIM) systems can significantly improve

intersection throughput.

1.1.4 Control framework for cooperative autonomous driving

One focus of this thesis is to propose frameworks for the previously mentioned two
forms of cooperative control: convoy and autonomous intersection management.
In the robotics and control community, generic formation control problems for

multiple robots have been an active research area for decades. However, unique

Yhttp://www.gedc.net/en/
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Figure 1.5: Screen-shot of the autonomous intersection management system pre-
sented in [1].

challenges exist for on-road formation control problem. Firstly, vehicles are con-
strained to move in a highly structured environment (a multi-lane road). Thus the
formation must adapt to the road shape. Secondly, each individual vehicle as well
as the entire convoy must respect traffic rules and avoid collisions with other traf-
fic participants and other convoy members. Thirdly, convoys must be flexible so
that we can reconfigure them if necessary. Ounly a few references [31, 30| consider
the coordination of autonomous vehicles on the road. However, none of them fully
answers the above mentioned challenges, especially the challenges on intra-convoy
collision avoidance and convoy reconfiguration.

AIM has been an extensive research subject in the last decades. Some AIM
designs [33, 35] adopt a centralized approach and use an intersection controller
to calculate feasible trajectories for all vehicles. Vehicles are controlled along the
planned trajectories to avoid collisions. However, although these designs may have
good properties since trajectories can be optimized in advance, a major weakness
lies in the difficulty to execute the planned trajectories in a changing environment
and under control and sensing uncertainties. To enable a quick response to changes
and unforeseen events, reactive approaches [36, 37| have been proposed. Instead of
programming complete trajectories, vehicles calculate their current control decisions
with respect to other vehicles’ states and environmental information. However,
purely reactive approaches may be inefficient and even lead to deadlocks.

From a more general point of view, the control framework for cooperative au-
tonomous driving also consists of a continuous component and a discrete component.
The continuous component mainly refers to trajectories of individual vehicles, while
the discrete component is linked to the existence of multiple maneuver variants when

two or more vehicles are involved. In the scenario of convoy, a vehicle have multiple



1.2. Contributions

maneuver choices when it needs to avoid collision with another vehicle (decelerate,
avoid by left, avoid by right, etc.). The reconfiguration of convoy also involves
discrete transitions between different convoy structures. As to AIM, the discrete
component is raised from different crossing orders of vehicles at intersection. FEx-
plicit consideration of the discrete component has not yet been considered in the
development of cooperative control strategies.

Therefore, the second task of this thesis is to answer the following question:

Problem 2. How to develop control frameworks for cooperative autonomous driving
applications—convoy and AIM that answer their specific challenges and consider the

discrele component?

1.2 Contributions

The contributions of this thesis can be synthesized as follows.

1.2.1 Hybrid MPC based framework for autonomous driving inte-
grating logical constraints

In Chapter 4, we propose a hybrid MPC based motion planner for autonomous
driving integrating logical constraints. We formulate the motion planning problem
as a Mixed Integer Quadratic Programming problem, which can seamlessly consider
both continuous and logical constraints. We illustrates how the motion planner
can be configured to handle challenging motion planning scenarios in which logical
constraints are involved, such as crossing an intersection in the presence of other
vehicles, avoiding multiple obstacles, overtaking in presence of oncoming traffic and

choosing optimal lane and planning lane change trajectories in a multi-lane road.

1.2.2 Control framework for convoy

Building on the MPC based control architecture for individual vehicles, Chapter 5
proposes a cooperative control framework for convoy. The framework is designed
in a hierarchical way, composed of a global convoy supervisor and multiple local
MPC based controllers for individual vehicles. The convoy supervisor manages the
formation and modifies the geometric configuration if necessary, and local MPC
based controllers are used at vehicle level to track the formation keeping reference
trajectories while respecting various constraints on vehicle dynamics and obstacle

avoidance.
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1.2.3 Control framework for autonomous intersection management

Chapter 6 proposes a novel hierarchical framework for the coordination of multiple
autonomous vehicles at intersection. The framework is composed of two levels: a
high-level intersection controller that determines the relative orders (priorities) of
vehicles to cross the intersection, and local MPC-based controllers configured to
respect the assigned orders. This framework ensures good properties such as effi-
ciency (deadlock-free) and safety (collision-free trajectories, robustness to unplanned

decelerations in case of emergency).

1.3 Thesis layout

Individual

Cooperative

— a

D MICEDRCED

Figure 1.6: Organization of the thesis.

This thesis is organized in a modular and hierarchical way as illustrated in
Fig. 1.6. Chapter 2 presents preliminary results on coordinate systems, vehicle
dynamic models and model predictive control techniques that will be used in this
thesis. Chapter 3 considers the control of individual autonomous vehicles and intro-
duces a hierarchical control framework with a high-level MPC for motion planning,
and a low-level MPC for trajectory tracking. Chapter 4 immediately follows Chap-
ter 3. It first discusses the inability of the MPC framework in Chapter 3 to handle
some logical constraints required by on-road driving, and proposes a novel hybrid
MPC design that is able to incorporate logical constraints. Chapter 5 and Chapter
6 consider the control of a group of cooperative autonomous vehicles. More specifi-
cally, Chapter 5 builds a framework upon the individual vehicle control architecture
of Chapter 3 for the convoy control of multiple autonomous vehicles. Chapter 6
is relatively independent from other chapters. It proposes a control framework for
autonomous intersections by assuming vehicles as second order point masses. Fi-

nally, Chapter 7 concludes the thesis and discusses the perspectives offered by the
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findings.






CHAPTER 2

Preliminaries

In this chapter, we introduce some preliminary results used in the remainder of the
thesis. In the first part of this chapter, we present the coordinate systems that we
will use throughout this thesis. Secondly, we consider the dynamic modeling of the
vehicle. Several simplified vehicle models are presented and discussed. Finally, we

give a generic presentation of Model Predictive Control methods.

2.1 Coordinate systems

X

Figure 2.1: Illustration of coordinate systems.

Fig. 2.1 shows the driving scenario of a vehicle. We introduce = and y as the
coordinates of the vehicle in the Cartesian frame; the origin of the Cartesian frame
can be set freely.

Since we consider on-road driving, it is sometimes convenient to use a road-
following coordinate system. We assume that the centerline of the current lane can
be described as a curve v € R? with C? continuity, ensuring that the curvature
and its derivative exist with respect to the curvilinear position. We define a Frenet
coordinate system (s,7), where s is the curvilinear abscissa along v, and r the lateral
deviation. The left and right boundaries of the road are defined as continuous
functions 7(s) and r(s). To ensure the bijection from the (s,r) frame to a Cartesian

frame, we require that for all (s, ),

r(s) <r <7(s)=1—re(s) <0, (2.1)
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where c¢(s) is the curvature profile of the road’s centerline at point s.

2.2 Vehicle models

We present several vehicle models useful for the planner and controller design of
this thesis. Years of research have resulted in a large number of models [38, 19,
39] ranging from overly-simplified point mass models to realistic four-wheel models
considering friction and suspension. As the thesis mainly considers the planning
and control of vehicles in normal driving scenarios, we focus on presenting some

simplified models that are suitable for the model based designs.

2.2.1 Double integrator

Figure 2.2: Tllustration of the double integrator model.

In normal driving scenarios, a vehicle drives inside its lane and its longitudinal
motion dominates the lateral one. Thus for applications in which the lateral motion
is irrelevant (e.g. platooning, intersection crossing, ...), we can simplify the vehicle
dynamics as a uni-dimensional point mass governed by Newton’s laws. The vehicle
is thus assumed to be able to perfectly track the centerline of the lane. As shown in
Fig. 2.2, a double integrator model can be formulated in the road-following Frenet

frame as

where s, v and a are respectively the longitudinal position of the vehicle along the
lane centerline, its speed and its acceleration.
To take into account the maximal tire force, we can limit the lateral acceleration

of the vehicle using the constraint
UQC(S) S [Qlahdlat]v (23)

where ¢(s) is the curvature profile of the centerline. An alternative approach is to

12
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use the notion of tire-road friction circle

(v2c(s))? + a® < (ug)?, (2.4)

where p is the friction coefficient and g is the gravity constant.

2.2.2 2D linear point mass model

Figure 2.3: Tlustration of the 2D linear point mass model.

The previous section models the longitudinal motion of the vehicle as a second
order linear system. It is possible to model both the longitudinal and lateral motion

of the vehicle using a linear model by making the following assumptions:

Assumption 2.1. The vehicle is treated as a point mass with negligible yaw dy-

namics.
Assumption 2.2. The centerline is considered as straight i.e. ¢(s) =0, Vs.

As the road is considered straight, we can properly chose the Cartesian frame so
that the Cartesian frame overlaps with the road-following Frenet frame. As shown

in Fig. 2.3, the vehicle dynamics are ruled by the following differential equation:

i = vy, (2.5a)
i = vy, (2.5b)
by = dg, (2.5¢)
by = ay, (2.5d)

where z and y denote longitudinal and lateral position in the Cartesian (or Frenet)
frame, v the speed and a the acceleration, with subscript x or y respectively indi-
cating their longitudinal and lateral components.

This formulation does not consider the nonholonomic constraints of the vehicle,

and the longitudinal and lateral dynamics are fully decoupled. The exact coupling

13
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between these dynamics involves nonlinear relations [19]; therefore, we approximate
it by an additional constraint. The vehicle heading 6 can be reconstructed as 6 =
arctan(vy/v;). We model the coupling of longitudinal and lateral dynamics by

enforcing condition 0 € [, 0], with

vy € [vy tan(), v, tan(6)]. (2.6)

To take into account the maximal tire force, we can limit the lateral acceleration

of the vehicle using the constraint similar to (2.3)
ay € [gy,(iy], (2.7)

An alternative approach is to use the tire-road friction circle as in (2.4).
Note that when the road is not straight, simply applying this model to the road-
following Frenet frame will induce modeling errors. The magnitude of the errors is

related to the road curvature.

2.2.3 Nonlinear point mass model

(%
-
—” \NﬂNNN -
X

Figure 2.4: Nlustration of the nonlinear point mass model.

The previous model is adequate for motion planning on highways or urban ar-
terial roads. However, the model mismatch becomes important if the longitudinal
dynamics is no longer dominant or if the road is not straight. In this case, it is
possible to consider a nonlinear point mass model incorporating the yaw dynamics
as shown in Fig. 2.4.

The model can be expressed in a Cartesian frame using the following equations:

14
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T =wvcosh, (2.8a)
Yy =vsinb, (2.8b)
b =a, (2.8¢)
0=w, (2.8d)

where v, 0 are respectively the speed and the heading of the point mass. a and w
are respectively the acceleration and the yaw rate.
Sometimes it is desirable to consider the vehicle motion in the road-following

Frenet frame. The above mentioned model can be transformed to the Frenet frame

1
$=wcosey (1) , (2.9a)

as

—rc(s)
7 = vsiney, (2.9b)
— (2.9¢)
€9 =W — VCOS ey (%) , (2.9d)

where s and r are coordinates in the Frenet frame, ey is the alignment error, i.e., the
angle between the vehicle heading and the road centerline. The road information is
encoded in ¢(s), which is the curvature profile of the centerline.
Note that to avoid singularity in the differential equations, we must add a con-
straint
1 —re(s) > 0. (2.10)

Finally, the constraint derived from tire-road friction limit must be considered
as in (2.3) or (2.4).

2.2.4 Kinematic bicycle model

Bicycle models lump left and right wheels at the front (rear) axes together in the
modeling process. Comparing to point mass models, they are more realistic as they
consider the side-slip angle. Moreover, they have fewer states than a complete four-
wheel model, and they strike a good balance between complexity and realism. They
are widely used in the literature [19, 40] to plan trajectories or to control the vehicle.
Here we only consider one type of bicycle models: kinematic bicycle model.

As shown in Fig. 2.5, the kinematic bicycle model [39, 40] is governed by the

15
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V&

Figure 2.5: Kinematic bicycle model.

following nonlinear differential equations in the Cartesian frame

& =wvcos(d + B), (2.11a)
y = wvsin(f + B), (2.11b)
b =a, (2.11c)
6= lﬂsm(ﬁ), (2.11d)
¢ =1, (2.11e)
B = tan! (zf l+ X tan(d))) , (2.11f)

where x and y are the coordinates of the center of mass. v, 8 and ¢ are respectively
the speed, heading and the steering angle of the front wheel, § is the side-slip angle, a
and 1 are respectively the acceleration and the steering angular velocity. Eq. (2.11f)
is an algebraic equation connecting 8 and ¢. [, and [y are respectively the distance
of the center of mass to the rear wheel and to the front wheel.

As in previous models, we must consider tire-road friction ( in (2.3) or (2.4))

limits when using kinematic bicycle model.

2.2.5 Concluding remarks

We have presented different vehicle models that will be used in this thesis, ranging
from the double integrator for longitudinal motion to the kinematic bicycle model.
Point mass models are computationally cheap while they overly simplify the vehicle

dynamics. Therefore, it is adequate to use them in the planning stage. The kine-
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matic bicycle model strikes a good balance between complexity and realism. We
are going to show that it can be used for the tracking control in normal driving
conditions.

Note that this section does not aim at presenting a complete survey of vehicle
models: the dynamic bicycle model and four-wheel models are not presented. While
these models are essential if we want to control the vehicle in challenging scenarios
like emergency maneuvers, icy road or drift, they are not in the scope of this thesis.

A complete survey on vehicle models can be found in [39].

2.3 Model predictive control

Measured System Trajectory

“PAST A FUTURE.

—e— Predicted System Trajectory
Past Control Input
/ Predicted Control Input
I Prediction Horizon
-« >
I } } I } } ; } >
k k+1 k+2 . k+K

Figure 2.6: Illustration of an MPC scheme.

Model Predictive Control (MPC), also known as Receding Horizon Control, has
been shown to be an attractive approach for the motion planning and control of
autonomous vehicles [19, 41, 18], thanks to its capability to systematically han-
dle vehicle dynamics, operating limits and on-road obstacles. MPC is a control
technique with the fundamental idea of using a model of the system to predict its
behavior up to a certain prediction horizon and generating control inputs that sat-
isfy the constraints and minimize a cost function (Fig. 2.6). The optimization is
repeated online at each sample time, in a receding horizon fashion, to take into ac-
count new measurements on the system state and the environment. Because of the
predictive nature of MPC, each optimization yields an optimal control trajectory for
the given prediction horizon as well as an optimal system trajectory. This specificity
of MPC makes it suitable for both control and motion planning problems.

Traditionally, MPC has been applied to control dynamic systems with slow dy-
namics [42] as it was computationally expensive. However, recent advances in op-
timization algorithms [43, 44| have significantly reduced the computation time of
MPC, thus clearing a major obstacle for automotive applications. In this section, we
introduce MPC formulations that will be applied to the motion planning and control

problems of individual autonomous vehicle or a group of autonomous vehicles in the
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remaining chapters. Section 2.3.1 introduces the MPC formulation for systems in
which all states are real-valued. Section 2.3.2 presents the MPC formulation for
mixed logical dynamic systems in which some states can only have values of either
0 or 1.

2.3.1 Model predictive control for systems with real-valued states

We consider a generic dynamic system £(t) = f(£(t), u(t)), for example, an arbitrary
system presented in Section 2.2. Let £ € R™ and u € R™ be the state vector and the
control input. We assume that all system states are continuously-valued. Without
loss of generality, we assume that the control inputs are piecewise constant with a

fixed sampling time 7, so that the dynamic can be discretized as
Ml = AN W) (2.12)

where % : R" x R™ — R™ is the state update function with C' continuity. The

system (2.12) is subject to the following state and input constraints,
Fex e, vk >0 (2.13)

where X and U are compact subsets of R"” and R™. We shift the time horizon so
that the current time is kK = 0. We assume that the full measurement of the state
€0 is available at the current time as 5 .

Let T be the prediction horizon of the MPC and let T'= K7 with K being the
number of time steps and 7 being the discretization interval. We can then define

the following finite time optimal control problem to be solved at each time step,

min J (€, u), (2.14)

subj. to
& =¢ (2.15a)
Rl = ek WP Yk e o,..., K — 1], (2.15b)
rexdeuveel,.., K], (2.15¢)
¢f e xy, (2.15d)

where &¥ is the predicted state at time k. &€ = [£0,...,65] is the state trajectory

obtained by applying the control sequence u = [uY, ..., u" ~1] to the system starting

from the initial state £. Equation (2.15d) is the terminal constraint with A’y being
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a compact set in R".

The cost function J(&,u) is a C! function defined in its generic form as

=

T(&u) =Y L) +6Ex) (2.16)

0

B
Il

where £(-,-) is the running cost and G(-,-) is the terminal cost.

The solution of the problem (2.14) is the optimal control input defined as u* =
[u*, ..., uf~1*]. Applying u* to the system (2.12) results in the (predicted) optimal
state trajectory &* = [€0%, ..., £5].

In traditional MPC schemes, the first sample of «* (in interval [0, 7) ) is applied
to control the system and the optimization problem is reformulated and solved at
the next sampling time. However, when (2.12) is just a simplified approximation of
the real system dynamics and a low-level tracking controller exists, we may discard
u* and pass the state trajectory £* to the tracking controller. In this case, the MPC
controller actually becomes a motion planner that plans the system trajectory.

The optimization problem is a continuous optimization problem with 2(m +
n) K variables, nK equality constraints (from (2.15b)) and a number of inequality
constraints (from (2.15c) and (2.15d)). The computational complexity of the MPC
is polynomial to the number of variables and constraints. Depending on the (non-
)linearity and (non-)convexity of the cost function and the constraints, different
numeric methods may apply to solve the problem. If the cost function (2.16) is in
quadratic form and all constraints are linear, the optimization problem is reduced
to a Quadratic Program (QP) for which efficient algorithms exists. On the other
hand, if the cost function is not quadratic and/or some constraints are nonlinear, we
must rely on Interior Point or Sequential Quadratic Programming algorithms [45]
which are in general less efficient than QP solvers. Remark that since these solvers
rely on gradient descent to minimize the cost function, they can be trapped in local

optima if the cost function or some constraints are non-convex.

2.3.2 Model predictive control of hybrid systems

Dynamic systems are traditionally described using a set of differential or difference
equations, typically derived from physical laws. However, in many applications,
the considered system also contains discrete-valued signals along with real-valued
signals. We refer to systems with both continuous variables and discrete variables
as hybrid systems.

General hybrid systems with nonlinear differential or difference equations are

hard to control. Here we consider a special type of hybrid systems called the Mixed
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Logical Dynamic Systems, which can be described by the following relations in

discrete time:

M = AR + Biu + Bao® + B32F + By, (2.17a)
C1E% + Couk + Cao® + Cu2F + C5 <0, (2.17b)

where £ € R™ x {0,1}™ is a vector of continuous and binary states, u € R™¢ x
{0,1}™ are inputs, ¢ € {0,1}" are auxiliary binary variables and z € R" are
continuous auxiliary variables. Capital letters represent matrices of suitable dimen-
sions. Eq. (2.17a) defines the state transition rule of the system. Eq. (2.17b) is the
collection of state and control constraints.

Similar to real-valued systems, MPC can be applied to control hybrid systems.
The MPC problem can then be referred as hybrid MPC (hMPC). Wet let the current
time be k = 0 and let the full measurement of the state £ as €. Let T be the
prediction horizon of the MPC and T' = K7 with K be the number of time steps
and 7 the discretization resolution. We can define the following finite time optimal

control problem to be solved at each time step:

min J (&, u, 0, 2), (2.18)
subj. to
&= (2.19a)
b+t = Ak + BiuF + Byo® + B32F + By ke [0,..., K — 1], (2.19b)
C1E% 4 Couf + C30® + Cu2F + C5 <0,k € [0,..., K — 1], (2.19¢)
¢ e &y, (2.194)

where &, u, o, z are respectively vectors for state, control, auxiliary discrete variable
and auxiliary continuous variables. Similar to real-valued MPC, the solution of the
problem (2.18) is the optimal control input «* with the optimal state trajectory &*
as by product; the cost function can also be decomposed to running cost terms and
a terminal cost as in the real-valued case.

The optimization problem is a Mixed-Integer Programming (MIP) problem.
General MIP problems are hard to solve, but efficient algorithms exist for special
instances of MIP, notably Mixed-Integer Linear Programming (MILP) and Mixed-
Integer Quadratic Programming (MIQP). Problem (2.18) becomes MILP if the cost
function and all constraints are linear. MILP problems can be solved by linear pro-

gramming based branch-and-bound algorithms. On the other hand, problem (2.18)
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is a MIQP if the cost function is quadratic while constraints are linear. Branch-
and-bound methods based on quadratic programming can be employed to effectively
solve the problem. Widely available solvers of MILP and MIQP include CPLEX [46]
and Gurobi [44].

2.3.3 Feasibility, stability and robustness

Feasibility of the optimization problem at each sample time must be ensured for
the formulated MPC problem. Infeasibility usually rises from the constraints that
have some extrinsic variables. For example, in automotive applications, obstacle
avoidance constraints contain variables representing the current and future states
of obstacles. The values of these variables at £ = 0 are usually measured with
noisy sensors and the future values are predicted using predefined motion models.
An optimization problem that is feasible at the current sample time may become
infeasible at the next instant when incorporating new measurements. A possible
way to preserve feasibility is to consider all possible values of these variables in the
constraint formulation, for example, using the notion of maximal invariant set [47],
so that we have a theoretical feasibility guarantee for the next sample time if the
current one is feasible. A simpler alternative is to convert the concerned constraints
to soft constraints. For example, a constraint Ciz + Cou + C3 < 0 is softened to
Ciz + Cou+ C3 < € with € > 0. An additional term Me? is also added to the cost
function with M being a large constant. In this way, small violations of constraints
are tolerated while strongly penalized to preserve feasibility. Both methods are used
in this thesis.

Informally speaking, an MPC formulation is said to be stable if the system
is controlled to asymptotically converge to a desired equilibrium. The theoretical
guarantee of stability is usually achieved by combining a properly designed terminal
cost G(¢K) with a terminal constraint £ € X} [48]. However, such design usually
increases the computational complexity of the optimization problem. Moreover, in
automotive applications, the desired equilibrium points change frequently. Thus, a
common practice [19, 21] is to ignore the terminal cost and terminal constraints and
to verify the stability by extensive simulations and experiments. Naturally, in this
way we lose the theoretical guarantee of stability. This thesis adopts the common
practice to only consider experimental stability.

Uncertainties exist in the modeling of vehicle dynamics and in the measurement
of vehicle states, which raise the problem of robustness for MPC. In more details, we
refer to robust stability and robust constraint satisfaction if the respective property

is guaranteed under bounded uncertainties. It has been shown that naive MPC
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formulation without any robustness consideration is intrinsically robust to small
uncertainties thanks to its predictive nature [49]. On the other hand, various robust
MPC formulations are discussed in the literature such as Min-Max [50], constraint-
tightening MPC [51], tube based MPC [52] and multi-stage MPC [53]. Notably,
tube based MPC has been applied to robustly control autonomous vehicles to avoid
obstacles [54]. This thesis does not consider the problem of robustness, while all
MPC formulations in the remaining chapters can be augmented to their robust

counterpart by following the tube-based methodology.
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CHAPTER 3

Model Predictive Control for

Autonomous Driving

This chapter presents the design of a nonlinear MPC based control framework for
autonomous driving. We consider a hierarchical design that decomposes the con-
troller into a motion planner and a tracking controller. At the motion planning
level, MPC is used to compute collision-free reference trajectories using the nonlin-
ear point mass model. At the tracking control level, an MPC controller based on the
kinematic bicycle model computes control inputs that track the high-level reference
trajectories. Simulations are performed to validate the approach. Note that ideas
similar to those presented in this chapter can be found in [19, 55]. Nevertheless,
this chapter differs significantly from [19, 55] as we use different vehicle models and
consider obstacle avoidance constraints differently. The proposed design will serve

as a basis for the rest of the thesis.

3.1 Introduction

An important research area for autonomous vehicles is the design of a robust and
efficient control framework that guides autonomous vehicles to proceed in an en-
vironment governed by traffic rules and populated with obstacles and other traffic
participants. Single-level controller designs that map road situations directly to
vehicle controls exist in the literature [9, 10]. However, for computational reasons,
most literature designs the control framework in a hierarchical way, with a high-level
motion planning (or trajectory planning) module that computes feasible trajectories
using simplified vehicle model and considering the environment information, and a
low-level tracking controller that tracks the trajectories. With such design, the com-
putationally intensive motion planner can run at a relatively low frequency and the
tracking controller can run at a high frequency.

Under this hierarchical philosophy, many motion planning frameworks [13, 14,
15, 56, 16, 17] have been proposed in the literature, which can be roughly divided into
three categories of approaches: path-velocity decomposition approaches, sampling

based approaches and Model Predictive Control (MPC) based approaches.
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The path-velocity decomposition technique [57] breaks down the motion plan-
ning problem into two sub-problems: path planning and velocity planning. The
path planning problem determines a kinematically feasible (curvature-continuous)
path along the road. Various path generation methods are proposed using cubic
curvature polynomials |58|, Bézier curves |56, 59|, clothoid tentacles [60], Dubin’s
paths [61], and nonlinear optimization techniques [17]. The velocity planning prob-
lem generates a speed profile that is adapted to the previously generated path.
Some work [62, 17, 63] assumes the velocity profile to have certain shape (poly-
nomial, trapezoidal, etc.) and samples some terminal states to generate a set of
profiles. A best profile for the chosen cost function is then selected.

Sampling based approaches [13, 14, 15] sample directly the state space of the
autonomous vehicle to obtain a set of feasible trajectories, and then select the best
one to execute according to a cost function. Deterministic sampling approaches [13]
discretize the state space using a spatiotemporal lattice. Graph search methods
are then adopted to find the optimal trajectory. The disadvantage of deterministic
sampling is that it is only resolution complete, meaning that the produced trajectory
is only resolution-optimal. In order to mitigate this problem, stochastic sampling
approaches [14, 15] are proposed using Rapidly Exploring Random Tree Star (RRT*)
and its variants. RRT* is powerful in exploring the state space and is asymptotically
complete (the optimal trajectory can be found eventually with a probability of 1).
However, the convergence speed towards the optimal trajectory is usually slow.

The downside of sampling based approaches is that they spend a large amount
of computation resources to generate and evaluate a large set of trajectories, while
most of them are discarded. Model Predictive Control (MPC) based methods [18, 64]
formulate the trajectory generation problem as an optimization problem over the
state space and use gradient-descending techniques to find the optimal trajectory.
The optimization problem is solved in a periodic fashion with a limited horizon to
take into account new environmental information. This category of approaches is
efficient in finding the optimal trajectory with the help of the gradient information.
Furthermore, MPC-based approach permits high-precision planning, for example,
keeping a precisely given distance from its preceding vehicle, thanks to its optimiza-
tion nature.

Rich literature also exists for controlling the vehicle to track a reference trajec-
tory. Notably, reference [65] presents a sliding mode controller design; reference [66]
utilizes the notion of flatness to control the lateral dynamics; and reference [67]
presents a model free approach to design the controller. As discussed in § 2.3, MPC
is applicable both in motion planning and vehicle control, thus some work [19, 10]

designs MPC-based tracking controllers using vehicle models of various degrees of
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complexity.

In this chapter, we will present the applications of MPC to the motion planning
and the control of autonomous vehicles. More specifically, in § 3.2, we present
the overview a hierarchical control architecture based on MPC. § 3.3 considers the
modeling of obstacles. In § 3.4 we detail the motion planner design and in § 3.5
presents the tracking controller. § 3.6 presents simulations and § 3.7 concludes this

chapter.

3.2 Control architecture overview
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Figure 3.1: Two-level control architecture based on MPC.

The philosophy of hierarchical MPC design is to separate the planning stage and
the control stage and optimize each one in parallel to improve global efficiency. At
the planning level, an MPC controller uses a simplified vehicle model to compute
dynamically feasible trajectories that avoid obstacles. At the control level, another
MPC controller is used to track the reference trajectory generated by the planner
using a more complete vehicle model without considering obstacles. Using such
design, the planner can run at a relatively low frequency, thus it can use a longer
prediction horizon and consider more on-road objects. On the other hand, the
controller can run at a high frequency since it can use a short prediction horizon

and does not need to consider obstacles.
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Fig. 3.1 illustrates the hierarchical control design. The current vehicle state £
is measured from the vehicle using sensors and is fed to both the planner and the
controller. The motion planner also takes as input the reference trajectory &y,
representing the desired trajectory if no obstacle is present. A simple form of ¢
can be a constant speed profile. The obstacle information contains the positions,
shapes, trajectory predictions and other information of on-road obstacles obtained
from the fusion of different sensors with the digital maps. The scenario specifica-
tion interface allows upper level components to re-configure and/or re-parameterize
the planner based on the current driving scenario (e.g., highway cruising, highway
merging/exiting, urban intersections, heavy rain/fog with exceptional speed lim-
its). This interface is necessary since different scenarios can lead to different sets
of constraints and different planner parameters. The motion planner generates the
optimal trajectories £, which is then converted to the reference trajectory & ey
for the tracking controller. Subscripts p and ¢ are respectively used to label the
planner and the controller. The tracking controller computes the optimal control
inputs (acceleration and steering) that best follow &.,c¢. The acceleration inputs
are fed to the acceleration/braking logic module to control the torques exerted on
the wheels. The steering inputs are directly applied to the vehicle.

Detailed planner and tracking controller designs are described in § 3.4 and § 3.5.

3.3 Obstacle Models

Cm ® - A

Figure 3.2: Obstacle classification.

A major task for autonomous driving is to avoid on-road obstacles including
other traffic participants, objects on the road and road works. Since obstacles
may have different sizes, shapes and dynamics, different avoidance strategies are
required. For example, an autonomous vehicle can avoid bicyclists by swerving
around them without changing its lane, while for a slow vehicle driving in the front,
the autonomous vehicle must decelerate to avoid rear-end collision (unless a lane
change command is issued).

In this section, we study two different models for on-road objects. We first

classify objects into two categories:
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e Lane-Blocking Obstacles (LBOs). Static or dynamic obstacles that block

one or more lanes (e.g. Obstacle A in Fig. 3.2).

e Non-Blocking Obstacles (NBOs). Static or dynamic obstacles that only
block a small part of a lane such that autonomous vehicles can swerve to avoid
them and proceed (e.g. Obstacle B in Fig. 3.2) .

Note that the classification for an object may change overtime considering the
current driving context. For example, a bicyclist at the border of the current lane can
be considered as an NBO unless we detect that he/she decides to cross the road. In
this situation, he/she should be considered as an LBO since the autonomous vehicle
must wait until the bicyclist has passed to proceed. As the focus of this thesis is
on vehicle control, we assume that obstacle classifications are provided in a timely
manner through the obstacle information interface by the perception algorithm.

We consider the obstacle modeling in the road-following Frenet frame. Different
models apply for LBOs and NBOs. Let o denote an obstacle and p, = [s,, 7] be the
(potentially time-varying) Frenet coordinate of the obstacle. A vehicle must keep
a safe distance from LBOs to avoid rear-end crashes unless it changes its lane. A

simple linear constraint can be defined as
s+ VT gap < So, (3.1)

where Ty, is the desired time gap.

r

A

T
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ror--A -

>
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Figure 3.3: Approximation of obstacle region by a parabola.

A vehicle is able to swerve to avoid NBOs. However, in many cases, NBOs cre-
ate multiple maneuver variants, e.g., a vehicle may swerve in clock-wise or counter
clock-wise manner. This problem is widely known as the combinatorial nature of
autonomous driving [2]. Moreover, the shapes of obstacles are usually irregular
and non-smooth. Therefore, approximations are required to incorporate obstacle

avoidance conditions into the nonlinear MPC scheme. Fig. 3.3 illustrates the ap-
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proximation method used in this chapter. For an arbitrary NBO, we first adopt
the heuristic to assign it to the nearest border of the road. Proper margins are
then added to the NBO to take into account the size of the vehicle and convert the
(potentially irregular) obstacle region into an enhanced obstacle region of rectangle
shape. Finally the enhanced obstacle region is approximated using a continuous and
differentiable parabolic constraint that crosses two vertices of the enhanced obstacle
region. For an obstacle affected to the lower lane boundary, the constraint is given
as

—r+ (as® +bs+¢) <0, (3.2)

and for an obstacle affected to the upper lane boundary, the constraint is given as
r— (as® +bs+c) <O0. (3.3)

The unknown coefficients a, b, c can be calculated by solving the following linear

system.
3(2)’0 500 1 a To,0
33,1 So1 1 bl =1701]> (3.4)
53,2 S0,2 1 c To0,2

where [s,0,70,0] is the vertex of the parabola and [s,, 0], 7 € {2,3} are the only
two points where the enhanced obstacle region intersects with the parabola.

Note that this approximation method inevitably overestimates the occupancy of
an NBO on the road space. If the on-road environment is cluttered, more precise
estimation will be necessary using higher degree polynomials or other nonlinear
functions.

We compactly written the mentioned obstacle avoidance conditions for LBOs
and NBOs as: Vo,

h(§,po) < 0. (3.5)
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3.4 Motion planner

We consider the MPC formulation for the motion planner. We recall the nonlinear

point mass model in the Frenet frame (2.9) discussed in Section 2.2.3:

1
$=wcosey <> , (3.6a)

1 —re(s)
7 = vsiney, (3.6b)
v =a, (3.6¢)
: c(s)
€p = w — VCOs ey (1—7“0(3)) : (3.6d)
We define & = [s,r,v,eg| as the state vector. s and r are respectively the longi-

tudinal and lateral coordinates of the vehicle. v is the vehicle speed and ey is the
heading error. The control inputs are u = [a, w|, with the first component being the

acceleration and the second one being the yaw rate. We compactly write the model

as £ = f(¢,u).

To take into account the dynamic limitations of the vehicle, we define bounds as
§e€[6, &l ue fu (3.7)

and we require
(3.8)

Let T be the prediction horizon of the planner and K be the number of steps.
Let € = [€9,...,¢K] and u = [u?,...,u*] be the vector of states and control inputs.

Consider the following cost function in least-square form:
K
T(Eu) = (16" = & ofllD + ¥R, (3.9)
k=0

where &, ;.. r is the state reference. @ and R are two positive diagonal matrices with

proper dimension. The MPC for planning is formulated as

2
)

mgnj(ﬁ,u) + MZ (elj)
Yo
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77777777777 =mm Previously Planned Trajectory

i l_Ll i === Currently Planned Trajectory

Figure 3.4: Replanning scheme of the motion planner.

subj. to Vk € [0, ..., K — 1],

€0 =H(E), (3.10a)
¢ = fl(Er Wb, (3.10b)
ke €, g],uk € [u,l, (3.10¢)
vFWF € [—Giar, Gat), (3.10d)
1 —rPFe(sh) > ¢, (3.10e)
h(eF,pk) < €8, Vo, (3.10f)
e > 0. (3.10g)

Eq. (3.10a) initializes the MPC problem. Fig. 3.4 illustrates the initialization pro-
cedure. The operator H maps the currently measured state to the spatially closest
point on the previously computed trajectory. The MPC problem is then actually
initialized from the point on the previous trajectory. This design ensures the refer-
ence trajectory to be continuous overtime and reduces the interference between the
planner and the controller. Remark that if the previous trajectory does not exist or
the vehicle deviates significantly from the previous trajectory, the motion planner
should be initialized from the current position of the vehicle.

Eq. (3.10b) is the discretized state equation. Eq. (3.10c) sets the bounds for
the state and the control input. Eq. (3.10d) takes into account tire limit by set-
ting the maximal and minimal lateral accelerations. An alternative approach is to
consider a tire-friction circle mentioned in § 2.2. Eq. (3.10e) is used to circumvent
model singularities in the optimization problem where € is a small positive constant.
Eq. (3.10f) captures all collision avoidance constraints. Note that as discussed in
§ 2.3, we soften the obstacle avoidance constraints to tolerate occasional violation of
the constraints due to sensor noise or control imprecision by introducing slack vari-
ables €& > 0. The term M >, (%)% is used to penalize the violation of constraints
with M a large constant.

Solving the MPC problem in a receding horizon fashion results in a sequence of
optimal trajectories £€*. The optimal trajectories are then fed to the controller for

tracking.
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3.5 Tracking controller

Recall the kinematic bicycle model in the Cartesian frame:

& =wcos(d + B), (3.11a)
y = vsin(f + 3), (3.11b)
b= a, (3.11c)
b= lﬁsm(m (3.11d)
¢ =1, (3.11e)
B =tan"? <lf :T_ I tan(qb)) , (3.11f)

compactly written as & = f.(&., uc). where & = [z,,v,0, ¢] is the state vector. z
and y are the coordinates of the center of mass. v,  and ¢ are the speed, heading
and the steering angle of the front wheel. The control inputs are u. = [a, ?], with
the first component being the acceleration and the second one being the steering
speed.

Bounds are defined as

e € [€, & ue € ug, (3.12)

and we require

§c = [_007_00707 _?07?]756 - [—I—OO,—I—OO,’l_),—I—OO,(b], (3.13)
U, = [Qyw}aﬂc = [aaw]

Let T¢. be the prediction horizon of the controller and K. be the number of steps.
Let & = [£9, ..., é5<] and u, = [u?

0. ...,ul<] be the vector of states and control inputs.

Consider the following cost function in least-square form:

K

Te(€erue) = D (1€ = Eapepllly, + llugllR,), (3.14)

k=0

where (). and R. are two positive diagonal matrices with proper dimension. & ¢y
is the reference trajectory obtained from the planner: £ — &.,.r. Note that the
coordinate systems, the prediction horizons and the discretization steps between
the planner and the controller are different. Thus we need to first map &* from
Frenet frame to Cartesian frame, interpolate the mapped trajectory(e.g. using cubic

splines) and then re-discretize it with the discretization resolution of the controller.
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¢ =]—00,—3m,0m/s, —0.4rad]

,& = [+00,3m, 25 m/s, 0.4 rad],
u=[-4.5m/s? —0.4rad/s|,u = [2.5m/s?, 0.4rad/s|,
T = 1.5m/s%, M = 100000, T = 5.0s, K = 25,Q = [0,10,2,100], R = [5, 200],
§c - [_OO’ —00,0, 00, _O'5rad]7gc = H_Oov +00,25 m/s, +00,0.5 rad],
u, = [-6m/s?, —0.5rad/s], U, = [4m/s?, 0.5rad/s],
T=16sK=8,Q.=[3,2,5,2], R. = [0.8, 10],

Table 3.1: Parameters used for the proposed control design

The MPC controller is then formulated as

min jc(éw uc)a

subj. to Vk € [0, ..., K. — 1],

P = fAEE ud), (3.15a)
e [¢, &) ul € [, uc]. (3.15b)

The solution of the MPC problem is the optimal acceleration profile and the
optimal steering speed profile. Since the vehicle is controlled by steering, we feed

the acceleration and the steering angle (instead of the steering speed) to the vehicle.

3.6 Simulations

In this section, we use extensive simulations to illustrate the performance of the
proposed control architecture. We have implemented our framework in the robotic
simulator Webots [68]. The control algorithms are coded in C++ and we use the
ACADO toolkit [43] to solve the MPC problems. Simulations were performed on a
personal computer running on a 3.4 GHz Intel Core i7 CPU with 32GB of RAM.
Table 3.1 captures the parameters that are common in all test cases. Vehicle
length is set to 4m and width 3m. The motion planner replans every 256 ms and
the tracking controller recalculates the control input every 32ms. Scenario-specific

parameters will be introduced respectively in each case study.
3.6.1 Static NBO avoidance

Scenario description

We consider the problem of avoiding static NBOs during high speed autonomous
driving on a straight road segment. The goal is to illustrate the capacity of the
proposed architecture to handle static obstacles. The motion planner is configured

to stay in the road centerline if possible and to track a constant speed profile of
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Figure 3.5: Illustration of the simulation setup for the static obstacle avoidance
scenario. EV stands for Ego Vehicle.

20m/s. Four obstacles are distributed along the road segment as illustrated in
Fig. 3.5. Obstacles are assumed to be 4 m wide and 6 m long. The chosen bounding
parabolas for obstacle regions are illustrated using dotted red lines. We assume that
the sensors of the ego vehicle have a detection range of 80 m, thus only obstacles

within the range will be considered by the controller.

Simulation results

We first perform the simulation assuming perfect localization. Fig. 3.6a illustrates
the vehicle trajectory and Fig. 3.6b presents the speed and steering profiles of the
vehicle. We observe that the vehicle decelerates when approaching the obstacles
(to satisfy the constraint on the lateral acceleration) and successfully avoids four
obstacles.

To demonstrate the robustness of the control architecture with respect to lo-
calization errors, we disturb the GPS signal with a uniformly chosen random error
inside [-0.5m, 0.5 m]. No filtering technique is used to smooth the GPS signal. The
simulation result is presented in Fig. 3.7. We notice that the ego vehicle is still
able to plan and track collision-free trajectories. The fact that we replan from the
nearest point on the previous trajectory rather than the current position enhances

the stability of the planned trajectories.
3.6.2 Dynamic NBO avoidance

Scenario description

We consider the scenario illustrated in Fig. 3.8 in which a vehicle needs to circumvent
a cyclist at the border of the road. The goal is to illustrate the capacity of the
proposed architecture in handling dynamic obstacles. The vehicle is tracking the

road centerline with a constant speed profile of 15m/s. The cyclist moves at a speed
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Figure 3.6: Perfect localization. (a) The trajectory of the ego vehicle as well as
the predicted trajectories of the motion planner. (b) The vehicle speed and vehicle
steering angle during the simulation.

of 4m/s. The obstacle region of the cyclist is chosen conservatively to be 2m wide
and 3m long.

We assume that the trajectory predictions of the cyclist are provided by the
perception component. In the simulation, the cyclist is assumed to maintain con-
stant speed during the prediction horizon. The vehicle localization is assumed to be

perfect.

Simulation results

Fig. 3.9a illustrate the trajectory of the ego vehicle. We observe that the ego vehicle
successfully circumvents the cyclist.

3.6.3 Lane change at the presence of an LBO

Scenario description

We consider the scenario illustrated in Fig. 3.10 in which the ego vehicle is approach-
ing a slow vehicle (considered as an LBO) driving at a constant speed of 10m/s. The

initial speed and the desired speed of the ego vehicle are both set to 15m/s. Since
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Figure 3.7: Imperfect localization with 0.5m error. (a) The localization signal of
the ego vehicle as well as the predicted trajectories of the motion planner. (b) The
vehicle speed and vehicle steering angle during the simulation.
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Figure 3.8: Illustration of the scenario of dynamic obstacle avoidance.

the slow vehicle is blocking lane 0, the ego vehicle must adapt its speed to avoid
rear-end collision. At simulation time ¢t = 10s, the controller receives a lane change
command to lane 1 (achieved by modifying the desired offset 7,y from 0 to 6m).
The constant time gap from the slow vehicle Ty, is set to 2s. In the simulation, the
slow vehicle is assumed to maintain constant speed during the prediction horizon.

The vehicle localization is assumed to be perfect.

Simulation results

Fig. 3.11aillustrates the trajectory of the ego vehicle. We notice that the vehicle first

decelerate to synchronize its speed with the slow vehicle in the front. At ¢ = 10s,
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Figure 3.9: Dynamic obstacle avoidance. (a) The trajectory of the ego vehicle as
well as the predicted trajectories. We mark the positions of the vehicle and the
cyclist at six different time instants using natural numbers and color codes (lighter
color means further time instant). (b) Speed profile and steering profile of the ego

vehicle.
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Figure 3.10: Illustration of the scenario of lane change.

the controller receives the lane change command and plans a dynamically feasible

trajectory towards lane 1. The ego vehicle then recovers its desired speed in lane 1.
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Figure 3.11: Lane change.

(a) The trajectory of the ego vehicle as well as the

predicted trajectories. We mark the positions of the vehicle and the slow vehicle
at six different time instants using natural numbers and color codes (lighter color
means further time instant). (b) Speed profile and steering profile of the ego vehicle.
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Computation time

Fig. 3.12 gives the evolutions of computation time for the three presented scenarios.
We observe that the computation time for the motion planner stays in the range
of [40 ms, 150 ms]. Notably, complex scenarios (static/dynamic obstacle avoidance)
cost the planner more time to find the optimal solutions. Nevertheless, computation
time in all scenarios is less than the replanning period (256 ms). The computation
time of the tracking controller remains below the replanning period of the controller

(32ms), demonstrating the efficiency of the MPC based tracking controller.
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Figure 3.12: Computation time for the motion planner and the tracking controller.
(a) static obstacle avoidance (perfect localization). (b) dynamic obstacle avoidance.
(c) lane change.
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3.7 Concluding remarks

We have presented a hierarchical design of the control architecture for autonomous
driving with a nonlinear MPC based motion planner for trajectory generation and
a nonlinear MPC based controller to follow the generated trajectories. Simulations
have demonstrated the effectiveness of the proposed approach.

One major requirement for nonlinear MPC is that its constraints must be dif-
ferentiable. However, on-road autonomous driving often leads to non-differentiable
or even non-continuous constraints. For example, the surface of a polytope-shaped
obstacle is non-differentiable. In this chapter, we used bounding parabolas to ap-
proximate obstacle regions to create differentiable constraints, which leads to over-
estimation of the area of the obstacle region. Is there a way to incorporate non-
differentiable constraints into the proposed framework? In the next chapter, a novel
hybrid MPC based motion planner will be proposed to consider both differentiable

and non-differentiable constraints.
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CHAPTER 4
Model Predictive Control for
Autonomous Driving Integrating Logical

Constraints

In this chapter we design a hybrid Model Predictive Control (hMPC) motion plan-
ner for autonomous driving. In the previous chapter, we formulated the motion
planning problem as a nonlinear program with differentiable cost functions and con-
straints. Gradient-based optimization methods were then used to find the optimal
trajectory. However, these methods are ill-suited for logical constraints such as those
raised by traffic rules, presence of obstacles and, more importantly, to the existence
of multiple maneuver variants. We propose a new hMPC design of the motion plan-
ner to formulate the trajectory generation problem as a Mixed-Integer Quadratic
Program. This formulation can be solved efficiently using widely available solvers,
and the resulting trajectory is guaranteed to be globally optimal. We apply our
framework to several scenarios that are still widely considered as challenging for
autonomous driving, such as obstacle avoidance with multiple maneuver choices,
intersection crossing, overtaking with oncoming traffic or optimal lane-change deci-
sion making. Simulation results and field experiments demonstrate the effectiveness

of our approach and its real-time applicability.

4.1 Introduction

In Chapter 3, we have presented a MPC based motion planner which translates the
planning problem into a nonlinear optimization problem. The simulation results
have shown that the proposed planner works well with differentiable cost functions
and constraints. However, the context of on-road autonomous driving also leads to
a different family of constraints, referred to as logical constraints because they can
be naturally formulated as propositional logic rules.

The first source of logical constraints is traffic rules and expected driving behav-

iors, for instance:

e If a vehicle is on a speed bump, then it must drive slowly.
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e If a vehicle wants to exit the highway, it must be on the exit lane.

These rules with “if-else” structures can be easily mapped to logical proposi-

tions. Moreover, driving generally involves discrete decisions among multiple ma-
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Figure 4.1: Hlustration of multiple maneuver variants for the white car in an over-
taking scenario. Adapted from Fig. 1 of [2].

neuver variants, which makes trajectory planning combinatorial in nature [2, 69, 70].
Fig. 4.1 illustrates an overtaking example in a two-lane road with on-coming traffic.
The ego vehicle (white car) has multiple maneuver choices, for example, it can over-
take the blue car after both the red and the green cars have passed, or it can overtake
using the space between the red car and the green car, or it can overtake before the
arrival of the red and the green cars. It has been rigorously shown in [2, 70| that
each maneuver variant can be mapped to a unique homotopy class of trajectories.
Propositional logic is adequate to implicitly or explicitly encode these homotopy
classes.

By nature, sampling-based methods can accommodate logical constraints. These
methods try to explore the entire state space with a large set of samples. We
only need to verify each sample against all constraints. However, they can only
produce sub-optimal trajectories even with many samples. As mentioned in the
previous chapter, MPC is efficient in finding optimal trajectories. However, most
current MPC based approaches are ill-suited to take these logical constraints into
account. The first issue is that logical constraints are usually discontinuous or non-
differentiable, while MPC-based methods rely on continuous, gradient-based opti-
mization algorithms like interior point or sequential quadratic programming [71].
Moreover, gradient-based optimization algorithms can be trapped in local optima
inside certain homotopy classes, while in order to find the global optimum we need

to explore various maneuver variants. To handle the first issue, methods [19, 2, 21]
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have been proposed to approximate logical constraints by continuous and differ-
entiable non-linear functions. For example, in [2]|, the rectangle-shaped obstacle
region is approximated using sigmoid functions. To cope with multiple local op-
tima, some [19, 72] propose to roughly evaluate different maneuver choices on the
behavioral planning level and heuristically initialize the optimization problem in a
homotopy class that is likely to be the best one. However, they provide no guarantee
regarding the global optimality and the design of heuristics is also challenging if the
driving context is complex.

A promising way of incorporating logical constraints in an MPC based frame-
work is to transform propositional logic rules into mixed integer constraints, thus
the optimization problem becomes Mixed-Integer Programming (MIP) problem [73].
MPC with integer variables is referred to as hybrid MPC (hMPC) [74]. Gen-
eral MIP problems are hard to solve, while efficient algorithms exist for special
instances of MIP, notably Mixed-Integer Linear Programming (MILP) and Mixed-
Integer Quadratic Programming (MIQP). Both have successfully been used for some
specific instances of robot motion planning problems. In |75, 76], MILP is used for
Unmanned Aerial Vehicle (UAV) trajectory planning. Logical constraints are used
to model the non-convex and non-differentiable obstacle regions. In [77], MILP
is applied to multi-vehicle collision avoidance problem, using logical constraints to
model the inter-vehicle collision avoidance conditions. Concerning automotive ap-
plications, references [78, 79| use MILP for the decision making of automatic lane
changes. However, the vehicle dynamics is overly simplified. Reference [70] is one
of the most relevant papers to our work. They tackle the problem of multiple ma-
neuver variants during autonomous driving by explicitly enumerating all homotopy
classes. For each homotopy class, they formulate and solve a MIQP based on a lin-
earized bicycle model to get the local optimum, and they compare all local optima
to find the global one. Nevertheless, to the best of our knowledge, a generic MIP
formulation considering realistic vehicle dynamics and capable of handling multiple
on-road driving scenarios is not yet available.

In this chapter, we propose a novel and generic hMPC based framework for the
motion planning problem of on-road autonomous driving using MIQP. Our method
permits to seamlessly consider both continuous and logical constraints. We apply
our framework to several scenarios which are widely recognized as challenging for
autonomous driving: for example, intersection crossing with the presence of other
vehicles, avoidance of multiple obstacles, overtaking in the presence of oncoming
traffic and optimal lane change planning. We demonstrate that our method can
intuitively handle these situations and produce globally optimal trajectories with-

out explicitly enumerating all maneuver variants. Finally, the proposed planner is
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validated both in simulations and experiments.

The rest of the chapter is articulated as follows. § 4.2 provides an overview
of the control architecture. In § 4.3, we present the hMPC based framework for
the motion planning problem of autonomous driving, assuming that the road is
straight. We show how logical propositions can be reformulated as mixed integer
constraints. In § 4.4, we present example applications of our framework to various
on-road driving scenarios using high-fidelity simulations. § 4.5 presents the field tests

of our framework in an autonomous vehicle. Finally, § 4.6 concludes the chapter.

4.2 Control architecture overview

Obstacle Scenario
Information Specification

fN v&pm@fl l

hMPC based Motion Planner

W 0 £ ey

~ MPC based Tracking Controller

3
a
'

- Acc/Braking o
~ Logic ‘
3
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Figure 4.2: Overview of the control architecture.

The proposed control architecture is similar to the hierarchical MPC design in
§ 3.2. The difference is that we replace the nonlinear MPC based motion planner
by an hMPC based planner, which is able to handle both continuous and logical
constraints. The planner can be configured and re-configured for different driving
scenarios through the scenario specification interface.

The optimal trajectories computed by the motion planner are transformed to ref-
erence trajectories for a low-level tracking controller. Unless specified, here we adopt
the same MPC-based tracking controller as in § 3.5. The computed acceleration and

steering values are used to control the vehicle.
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In the following sections, we will present the design of the motion planner and

its applications to different driving scenarios.

4.3 Motion Planner

We present an hMPC based motion planner design to formulate the optimal trajec-
tory planning problem as an MIQP problem. We consider that the ego vehicle is

driving on a road with lane markings. We make the following assumption:

Assumption 4.1. The road curvature is sufficiently small to consider the road as

straight within the horizon of one MPC stage.

This assumption allows us to model the vehicle dynamics in a Cartesian frame
(z,y) with x the longitudinal direction of the road and y the lateral direction.

Remark that this assumption has a major drawback. It induces modeling errors
proportional to the road curvature and the lateral deviation of the vehicle with
respect to the road centerline. However, we expect this error to be small in major

applications like highways and urban arterial roads.

4.3.1 Model

Figure 4.3: 2D linear point mass model.

We model the vehicle dynamics using the 2-dimension linear point mass model
Eq. (2.5) presented in § 2.2.2. We briefly recall the model as shown in Fig. 4.3. We
define the state vector &, and control vector u, as

gp = [I‘, Ul‘a y7 vy]Ta up = [CLI, ay]T
where z and y denote longitudinal and lateral position in the Cartesian frame, v
the speed and a the acceleration, with subscript = or y respectively indicating their

longitudinal and lateral components. Note that subscribe p on §, and u,, is used to

distinguish the model for the planner from the model for the controller. Since we
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only consider the planner in this chapter, we omit p in the following paragraph to
simplify the notations. The vehicle dynamics can be compactly written using the

following linear differential equation:

. A 0 B 0
— + ,
=10 a|*Tlo B|"
(4.1)
a0 o] 5ol
0 1 1

where 0 is a zero matrix with proper dimensions.
Discretizing the vehicle dynamics with a time step duration of 7 leads to the

following equation:

d d
€k+1: A 0 gk_’_ B 0 uk7
0 Al 0 B¢
) (4.2)
0 1|’ T

To take into account the dynamic limitations of the vehicle, bound constraints

are enforced on the state and control signals as

§el§ &, u € [u ul, (4.3)

with the bounds defined as
£=10,0,y,v,]",& = [+00,0., 7,7, (4.4a)
u=la,,a,)", 0= [a,a,". (4.4b)

We enforce the following condition to couple the longitudinal and the lateral
dynamics

vy € [vg tan(f), vy tan(d))]. (4.5)

Remark that this point-mass model is widely used at the planning stage [19, 20]

for normal on-road driving as it is conceptually simple while capturing most of the

vehicle dynamics. In fact, if the constraints (4.3) and (4.5) are properly chosen, we

can reconstruct all vehicle states of a bicycle model using the differential flatness

theory [80]. On the other hand, this model is no longer feasible if the vehicle

is operating near its limit, for instance when executing an emergency maneuver.

A common workaround is to design an emergency controller which overrides the

planner in this situation. Here we only consider normal driving situation where the
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point-mass model applies.

4.3.2 From logic propositions to mixed integer constraints

20 , ‘
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Figure 4.4: Illustration of the speed bump scenario with the speed bump region
marked by gray color.

We first recall some basics of propositional logic. We define a literal as an
atomic statement corresponding to a linear mathematical condition on one of the
state variables, for instance: the speed of the vehicle is smaller than 10m/s. Literals
can be combined using connectors, such as A (and), V (or), = (negation); other
connectors like implications (=) and equivalences (<) can be formed using the
first two connectors. To illustrate, we consider a speed bump scenario in which
the vehicle must decelerate to 10m/s on the speed bump situated in the range x €
[40m, 60 m] (Fig. 4.4). We define three literals P; = [2% > 40], P, = [z¥ < 60] and
P3 = [v¥ < 10]; the rule can then be expressed in the form: Yk > 0, (P} A P2) = P,
i.e. if the vehicle’s position is within [40m, 60 m], then the vehicle’s longitudinal
speed should be lower than or equal to 10m/s.

Once we have abstracted related logic rules into formal propositions, we can
further reformulate them as a set of linear inequalities with continuous and integer
variables, as shown in [81]. The idea is to force the value of a binary variable to
be equal to 0 (or 1) when a given literal is true, and/or equal to 1 (or 0) when the

literal is false. In the previous example, we can let 5f =1= P, forie{1,2,3} so
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that the speed bump rule can be expressed equivalently as, Vk > 0,

— o5 405 <0,
o 4ok — ok < 1.

oF =1 = 2% > 40, (4.6a)
ok =1= 2% <60, (4.6b)
o8 =1 =k <10, (4.6¢)
— oV 40k <0, (4.6d)
)
)

The associations (4.6a), (4.6b) and (4.6¢) can then be finally translated to mixed-
integer inequalities using the so-called Big-M method [81]. For instance, (4.6a) is

rewritten as

a® > 40 — M(1 - oF), (4.7)

where M is a large positive constant. For example, we can conveniently choose M
to be 106.

4.3.3 MPC formulation

We introduce a new vector-valued variable o such that o* = {0,1}™ is a collection of
all binary variables that are introduced at time k from the reformulation of relevant
literals as mixed-integer linear inequalities. We consider a time horizon T' = K7 with
K being the number of time steps in the prediction horizon. Let & = {¢°,...,¢K}
and u = {u’, ,uK} respectively be the state and control trajectory for the given
time horizon. Let &,.5 be the reference trajectory for the vehicle, which can be time-
dependent, state-dependent, or dependent on propositions. Let o be the trajectory
of the binary variable [0°, ..., 0%]. We also introduce Ores as the reference trajectory
for the binary variables, so that we can also express preferences on some binary states
if needed, for instance to specify a preferred lane in a multi-lane road. At current

time t = 0, we formulate the following optimization problem

K
mmJ&ua:=z:Mk Ello + o™ — o |5 + [Juf|13 + [[AuF(f),  (4.8)
we k=0
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subject to
50 — 7_[(5)7 (4.9a)
At 0 Bl 0
k+1 k k

- + Wk k=0, K1, 4.9b

3 o a4l € o B (4.9b)

Felg éu € uu),k=0,.., K, (4.9¢)

U]; e [v¥tan(d), v* tan(9)],k = 0, ..., K, (4.9d)

AuF =ufF —uF k=0, K, (4.9¢)
3

Cl&er| <D, (4.9f)
o

where ), R, S, and W are non-negative weighting matrices of proper dimensions.
Eq. (4.9a) is the constraint on initial value. We introduce AuF as the difference
between two consecutive control inputs to penalize jerk (Eq. (4.9e)). Note that
we must know the previous control input u~'. Constraint (4.9f) is the set of all
linear inequalities written in matrix form with two matrices C' and D of proper
dimensions, incorporating all mixed-integer constraints derived from the current
context of driving. The cost function (4.8) is quadratic and the constraints (4.9)
are linear and potentially mixed integer. Therefore, the above optimization problem
is an instance of mixed-integer quadratic programming (MIQP) problems. Integer
programming problem are NP-hard and so are MIQP problems since it is a subset
of integer programming problems, however, exact resolution algorithms that deploy
efficient heuristics are known to solve such problems without exploring the whole
decision tree.

The optimization problem is formulated and solved in a receding horizon fashion.
At each time step, the solution of the problem is a globally optimal trajectory &3
which is fed to the tracking controller.

The proposed MPC formulation is sufficiently generic to cover a vast majority
of normal driving scenarios, as will be illustrated in Section 4.4. If we must consider
non-quadratic cost functions, non-linear vehicle dynamics or non-linear constraints,
we can formulate a Mixed Integer Non-linear Program, which, however, is much

harder to solve.
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€=10,0,—2m,—3m/s|’, & = [free,25m/s,8m,3m/s]’,
u=[-3m/s?, —1m/s?|T, u = [3m/s?, 1 m/s?]|T,
9 = —0.5rad,d = 0.5rad,
q=1,20=2,q3=4,51 =2,80 =4, w1 = 4,wy = 16.

Table 4.1: Parameters used for the hMPC-based motion planner in applicative ex-
amples

4.4 Applicative examples and simulations

In this section, we present a variety of applicative examples to concretize the pro-
posed motion planner design. This design can be configured to effectively handle var-
ious on-road driving scenarios, including speed bump, intersection crossing, obstacle
avoidance, overtaking and lane change. Note that, although the major purpose of
this section is to demonstrate the flexibility of the design, the detailed formulations
for different driving scenarios are by themselves contributions to some challenging
problems for on-road autonomous driving. Simulations are performed with in-depth
quantitative analysis, proving the implementability of our framework.

Throughout this section, we use the following cost function for the planner

K
T = (v —vep)’ + a2(6" — yrep)” + as(vy)’ + s1(af)?

rart (4.10)
+ sa(ah)? + wi(al — a2+ ro(al — ai™")?,

such that the vehicle tracks a constant desired speed profile v,.; and a potentially
time-varying desired lateral deviation yffe k€ [0, ..., Kp], while trying to minimize
the control effort. We do not assume any desired binary state, and therefore the
term ||o* — ok fH?S‘ in the generic formulation is ignored. In all cases, the ego vehicle
is assumed to start at position (0,0). Other parameters that are common in all
cases are summarized in Table 4.1. Scenario-specific parameters will be presented
respectively in each case study.

In all simulations, we assumed that the perception components estimate the tra-
jectories of surrounding objects using constant velocity hypothesis (objects maintain
constant speeds in the prediction horizon). More realistic estimation methods could
be envisaged but are not considered in this thesis. The vehicle localization is as-
sumed to be perfect.

The motion planner updates at a frequency of 5Hz. The low-level tracking
controller is identical to the one described in § 3.5.

Note that the feasibility issue mentioned in § 2.3.3 also raises in hMPC design, in

which the optimization problem may become infeasible over successive iterations due
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to small violations of some constraints. The constraint softening technique described
in § 2.3.3 is adopted to transform the concerned constraints to soft constraints. Here
we do not explicitly describe the constraint softening procedure.

We use the commercial solver Gurobi [44] to compute solutions to our MIQP
formulation. Since the MIQP problem is NP-hard and Gurobi uses heavily optimized
heuristics to accelerate calculations, there is no guarantee of computation time (even
though the solver is quite efficient most of the time). We notice that Gurobi often
finds the optimal solution in a short time while spending much more time in proving
the optimality of the solution. This inspires us to set an upper-bound of 200 ms on
the computation time so that Gurobi returns the currently best solution if hitting
the upperbound. In this way we guarantee the update rate of the motion planner.
However, there is no longer theoretical guarantee of optimality even though we
observe that most of the time the solutions are in fact optimal (while not yet proved
by the solver).

The non-linear optimization problem of the tracking controller is solved by
ACADO Toolkit [43]. Simulation codes are written in C++, and experiments
are performed on a laptop with a mid-range Intel Core i5-5300U CPU clocked at
2.30GHz with 8GB RAM.

4.4.1 Speed bump
Scenario description

The first case study considers the speed bump scenario (Fig. 4.4) that is used as an
example in § 4.3.2. The speed bump conditions are given in (4.6). The initial speed
of the vehicle is equal to its desired speed v,.y = 15m/s while on the speed bump
(within the interval of [40m,60m]) the maximally allowed speed is 10m/s.

Simulation results

In the simulation, we use a prediction horizon T = 5s and time step duration
7 = 0.25s. Fig. 4.5 illustrates the longitudinal speed profile of the planned trajectory
with respect to the traveled distance. We observe that the vehicle effectively reduces

its speed to less than 10m/s.

4.4.2 Intersection crossing
Scenario description

We consider the problem of controlling a vehicle at an intersection, where it is

not allowed to cross the intersection unless no other vehicle (called non-controlled
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Figure 4.5: Longitudinal speed profile with respect to the longitudinal offset. Green
curves mark the predicted trajectories during the MPC iterations and the blue curve
marks the actual trajectory of the vehicle.

vehicle) is inside the intersecting region. For example, Fig. 4.6 shows a scenario with
two non-controlled vehicles. The ego vehicle has four maneuver choices: crossing
before both cars, after the blue car and before the red car, before the blue car and
after the red car, or after both cars. Some maneuver choices may be impossible or
dynamically infeasible for the ego vehicle. In [82], the authors propose to construct
an MPC problem for each maneuver choice and select the global optimum among
all local optimal solutions. Here, we demonstrate that with our framework explicit

enumeration is no longer necessary.

Vehl@

(w) -

Ego Vehicle

.-‘ Veh 2

Figure 4.6: Illustrative example of the intersection crossing scenario. The ego vehicle
(white) needs to cross the intersection without colliding with the non-controlled
vehicles (red and blue cars). We do not consider road priority in this example.

In our scenario, the initial speeds of three vehicles are set to 10m/s and the
desired speed of the ego vehicle is also set to v,y = 10m/s. We refer the red car as
Vehicle 1 and the blue car as Vehicle 2. The intersection region is set to [52m, 58 m]
for all vehicles in their local longitudinal coordinate systems. The initial positions

for the ego vehicle, Vehicle 1 and Vehicle 2 are respectively 0, 0 and —30m.
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Formulation of constraints
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Figure 4.7: Hlustration of the earliest arrival time and the latest departure time.

Let [L, H] be the path segment of the ego vehicle for the intersection region.
We use o to denote a non-controlled vehicle. The path segment of o inside the
intersecting region is defined as [L,, H,]. At any given moment, only one vehicle
can be inside the intersection region. Thus if x, € [L,, H,|, then the ego vehicle
must respect x ¢ [L, H].

At the beginning of a motion planner iteration of the ego vehicle, we monitor
the states of non-controlled vehicles that have not passed their intersection regions.
We first compute the earliest arrival time ¢, for o with respect to its intersection

region [L,, H,| by assuming that it applies an acceleration of a, , > 0 (Fig. 4.7):
ig — T(Lo — ZLo, Vzx,0, C_L$,O)’ (411)

where 7 (x,v,a) is a function that computes the time to traverse a distance of x if
the current speed is v and the vehicle applies a constant acceleration of a. If the
vehicle cannot traverse x in finite time, then the time is set to +o0o. The reason of
introducing @, , instead of assuming constant speed of o is to add a reasonable error
margin on the motion estimation of non-controlled vehicles.

Similarly, we compute the latest departure time ¢, as the latest time instant
when the vehicle leaves the intersection, assuming a constant deceleration a, , <0
(Fig. 4.7).
to=T(Ho— To,Vz.0,0,,) (4.12)

2z,0

Since the dynamics of the ego vehicle is discretized with a time step duration 7,
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we introduce two integer variables k, and k, as

1, (4.13a)

ko= 2], (4.13Db)

We formulate the safety constraints for the ego vehicle. For each non-controlled
vehicle, we introduce a binary variable §, € {0,1}. The planner of the ego vehicle
runs with a horizon K, if k, < k, < K, we let

0o = 0= zko > H, (4.14a)
5, =1=a" <L (4.14b)

As the variable 6, can only take either 0 or 1 for its value, the ego vehicle is
required to either traverse the intersection before o’s earliest arrival time or stay out
of the intersection until o leaves the intersection.

Iftk, <K< ko, we let

6o = 0= ako > H, (4.15a)
bo=1=28 <L (4.15D)

The ego vehicle is required to either cross the intersection before o’s earliest arrival
time or stay out of the intersection at the end of the prediction horizon.

K<k, < ko , o1is still far from intersection, thus we do not add any constraint
on the ego vehicle.

Eq. (4.14) - Eq. (4.15) are then integrated to the hybrid MPC framework fol-
lowing the procedure of § 4.3.3.

Note that a,, and Ay o are two design parameters that can be chosen according
to the required level of conservativeness: choosing large absolute values increases

the conservativeness of the motion planner.

Simulation results

In simulations, we use a prediction horizon T' = 5s and 7 = 0.25s. We choose
ro = 1m/s® and g, , = —1m/s’. In the first simulation, we assume that non-
controlled vehicles keep constant speed during the intersection crossing. In Fig. 4.8a,

we observe that the ego vehicle choose to traverse the intersection after Vehicle 1
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Figure 4.8: Intersection simulation 1: (a) Longitudinal positions of three vehicles
as functions of time. (b) Longitudinal speed profile of the ego vehicle as well as the
predicted trajectories during MPC iterations. EV - Ego Vehicle, Veh 1 - Vehicle 1,
Veh 2 - Vehicle 2.

and before Vehicle 2. Fig. 4.8b illustrates the speed profile of the ego vehicle. We
observe that the ego vehicle slightly decelerates at the beginning to yield to Vehicle
1 and then return to its desired speed.

To serve as a comparison, we perform a second simulation in which we force
Vehicle 2 to accelerate with an acceleration of 1m/s? between ¢ = 2.5s and t = 10s.
Fig. 4.9a illustrates the result. The ego vehicle chooses to yield to both Vehicle 1
and Vehicle 2. In Fig. 4.9b, the predicted trajectories suggest that during the first
2.5s, the ego vehicle decides to pass between Vehicle 1 and Vehicle 2. However,
since Vehicle 2 starts to accelerate from 2.5s, the motion planner finds that this
decision is no longer optimal and switches to another decision.

Note that the proposed formulation can also be adapted to select the optimal
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Figure 4.9: Intersection simulation 2: (a) Longitudinal positions of three vehicles
as functions of time. (b) Longitudinal speed profile of the ego vehicle as well as the
predicted trajectories during MPC iterations. EV - Ego Vehicle, Veh 1 - Vehicle 1,
Veh 2 - Vehicle 2.

time to enter a highway in a merging scenario and compute the associated trajectory.
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4.4.3 Obstacle avoidance

Scenario description

2
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Figure 4.10: Nlustration of the obstacle avoidance scenario. The obstacle is colored
in red. The light-red area is used to take into account the size of the ego vehicle.

We now consider an obstacle avoidance scenario during on-road driving as shown
in Fig. 4.10. There are two identical obstacles centered at (60, 1) and (120, —1). The
irregular shapes of obstacles are approximated using minimal bounding rectangles
(region with light red color) with the length L, = 10m and width W, = 2.6 m,
taking into account the size of the ego vehicle. A more complex convex polygonal

modeling is also possible, at the cost of increased computational complexity.

Formulation of constraints

For an obstacle o with bounding rectangle [z¥ — L, 2% 4 L] x [y* — W, y* + Wk],

the set of constraints for collision avoidance is then given as Vk > 0,

o1 = 1= a(k) < g — Lo, (4.16a)
Syo = 1= (k) > x5 + Lo, (4.16b)
Sz =1=z(k) <ys — W,, (4.16¢)
Sga=1=z(k) > y5 + W,, (4.16d)
5§1+5§,2+503+5§4*1 (4.16e)

Note that the formulation allows both moving and still obstacles. The condi-
tions (4.16) state that the vehicle must be separated from the obstacle, either by a
longitudinal distance L, or laterally by W,.

Simulation results

We choose the horizon of the motion planner as T'= 10s and 7 = 0.5s. Fig. 4.11a
illustrates the vehicle trajectory. We notice that the vehicle successfully avoids all

obstacles. Fig. 4.11b shows the vehicle speed and the steering angle profiles.
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Figure 4.11: Obstacle avoidance scenario: (a) Vehicle trajectory as well as predicted
trajectories. (b) Speed profile and steering angle profile.

4.4.4 Overtaking in a two-lane road

Scenario description
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Figure 4.12: Illustration of the overtaking scenario.

We consider an overtaking scenario on a two-lane road with oncoming traffic
as in Fig. 4.12. The ego vehicle is driven towards the east with a slow vehicle in
the front. Two vehicles are on the adjacent lane driving on the opposite direction.
The ego vehicle has multiple choices for overtaking: overtaking before the arrival of
the two oncoming vehicles, overtaking using the space between the two vehicles or
overtaking after the passing of two vehicles. This scenario is considered as difficult
for both human drivers and autonomous vehicles [83, 20, 2|.

We assume that the initial speed of non-controlled vehicles are 10m/s and the

initial speed of the ego vehicle is equal to its desired speed v,y = 15m/s. Vehicles
are all 3.5m and 2.5m wide.

58



4.4. Applicative examples and simulations

Formulation of constraints

It is possible to model surrounding vehicles as rectangles as in the previous case
study, thus requiring four integer variables for each vehicle and each time step k.
However, by introducing the so called ramp barrier [20, 83|, the problem can be
further simplified by approximating the rectangular obstacle region by a triangular
one only requiring two integer variables as shown in Fig. 4.12.

Consider a surrounding vehicle o; if 0 is on the same lane as the ego vehicle, the

constraints are given as

-y
F=0= — ° ° >1 4.17
0 I, w, =° (4.172)
k k k k
r — X Yy =y
F=1= ° °©>1 4.17b
o Lo + WO — b ( )

where L, and W, are minimal longitudinal and lateral separations during lane

change. Similarly, the constraints for an oncoming vehicle o can be modeled as

k=0= + < -1, (4.18a)

(4.18b)

Simulation results

In simulations, we adopt a sufficiently long prediction horizon of 7' = 15s so that the
planner can plan a complete overtaking trajectory. We let 7 = 0.5s. The parameters
L,=8and W, = 3.5.

In the first simulation, we assume that all surrounding vehicles drive at constant
speeds. The duration of simulation is 30s. Fig. 4.13a illustrates the overtaking
trajectory. In Fig. 4.13b, we observe that the ego vehicle first decelerates slightly to
wait the first on-coming vehicle to pass, then it accelerates to use the space between
the first and the second on-coming vehicles to perform the overtaking.

To serve as a comparison, in the second simulation, we assume that the second
on-coming vehicle accelerates with a constant acceleration of 1m/s? between t =
7.5s and t = 15s and maintains constant speed for the rest of time. Fig. 4.14a
illustrates the trajectory of overtaking. The ego vehicle first plans the same strategy
as in scenario 1, by using the space between two oncoming vehicles to overtake.
However, as the second on-coming vehicle starts to accelerate, the ego vehicle finds

that it’s more desirable to wait for both on-coming vehicles to pass and then perform
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the overtaking. This scenario demonstrates the reactivity of the motion planner with

respect to the changes of surrounding vehicles.

gl Prediction — EV |

Figure 4.13: Overtaking simulation 1: (a) the trajectory of overtaking as well as
the predicted trajectories. We mark the positions of vehicles at six different time
instants using natural numbers and color codes (lighter color means further time
instant). (b) Speed and steering profiles.
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g Prediction — EV

Figure 4.14: Overtaking simulation 2: (a) the trajectory of overtaking as well as the
predicted trajectories, (b) speed and steering profiles.
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4.4.5 Lane change

Scenario description
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Figure 4.15: Illustration of the lane change scenario

The final scenario considers the problem of decision making and motion planning
for a lane change maneuver: the ego vehicle must decide the objective lane as well
as the optimal trajectory to reach this lane, without colliding with surrounding
vehicles.

Fig. 4.15 shows a highway with three lanes. The ego vehicle starts in the right-
most lane with a speed of 20m/s, equal to its desired speed. Surrounding vehicles
are distributed over three lanes. The vehicle on the leftmost lane drives at a speed
of 20m/s while other surrounding vehicles drive at a speed of 15m/s. Vehicles are
all 3.5m and 2.5m width. Since the ego vehicle will soon catch up with the slow
vehicle in the front, it either needs to decelerate to synchronize its speed with the

front vehicle, or changes lane.

Formulation of constraints

The complexity of this problem lies in the multiple discrete choices raised from
multiple lanes and multiple vehicles on each lane. References [79, 78| have considered
this problem using MILP formulations; however, their modeling cannot ensure that
trajectories are dynamically feasible due to important simplifications of the vehicle
dynamics.

We consider a road with N lanes, labeled by v € {1,..., N}. We introduce a
binary variable (55 that equals 1 if the ego vehicle is on lane v at time step k. Let I
be the label set of surrounding vehicles and I, be the set of vehicles inside lane ~.
Let y, be the centerline of the lane v and y* be the reference lateral deviation at

time step k. We introduce the following logical constraint: Vk > 0,

=1 (y,’? =y, AyF € [g’y,g,},]) : (4.19)
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such that, if the ego vehicle is in lane 7, then the vehicle should be within the
boundary of lane « and the reference lateral deviation should be set to the centerline
of the lane.

Moreover, we add the following collision avoidance constraints: Yk > 0,
=1=Viel,d=0=2"<al-L,

(4.20)
F=1=a >+ L,

such that the ego vehicle must avoid collisions with all the vehicles in lane ~.
The ego vehicle is only allowed to be in one lane at any given time, thus we add

the following constraint:Vk > 0,
N
> k=1 (4.21)
y=1

Constraints (4.19), (4.20) and (4.21) are enforced along with constraints on ve-
hicle dynamics on the formulated MIQP problem.

Remark that this formulation considers the vehicle as a point mass. It is thus
necessary to have enough safety margin on L, to take into account the shape of the

vehicle.

Simulation results

The horizon is set to T' = 15s and the time step 7 = 0.5s. The simulation duration
is 30s. The parameter L, is chosen to be 10m. We observe in Fig. 4.16a that the
ego vehicle chooses the left-most lane as the objective lane since only in this lane
the ego vehicle can drive at its desired speed. It plans dynamically feasible and

collision-free trajectories to reach the lane within the prediction horizon.
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Figure 4.16: Lane change scenario: (a) The trajectory of lane change as well as
predicted trajectories. We mark the positions of vehicles at six different time instants
using natural numbers and color codes (lighter color means further time instant).
(b) Speed and steering profiles.
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Computation time

The execution time statistics for the hMPC based motion planner are summarized in
Fig 4.17. We observe that the motion planner is able to compute optimal trajectories
within 100 ms for the scenarios of speed bump, intersection crossing and obstacle
avoidance. For the scenarios of overtaking and lane change, the computation times
for the first 15s hit regularly the upper-bound of 200 ms. The reason is two-fold:
first, the number of time steps for both scenarios is 30, which leads to a large number
of continuous and discrete variables; second, there are many maneuver variants in

both scenarios.

—SB —1IC Sim. 1 OBS OT Sim. 1 —LC
250 T T T T T

Comp. Time (ms)

Figure 4.17: Statistics of computation time for different simulations

4.5 Experiment

Setup

The experiment has been performed with the Mercedes-Benz S-Class S 500 vehi-
cle Bertha of Karlsruhe Institute of Technology at a test ground near the campus.
Bertha weights 1900 kg and is equipped with a 195 kW diesel engine. It is equipped
with a state-of-the-art computer powered by Intel Xeon 16-core 2.6 GHz CPU. The
computer runs Robot Operating System (ROS) on the top of a Ubuntu linux. It
uses a high precision OxTS RT3000 INS GPS to perform centimeter-level localiza-
tion. Mercedes-Benz has provided a well-defined interface to retrieve information
on vehicle states and to control acceleration and steering. The hMPC-based motion
planner was implemented as a ROS package and was integrated into the existing
architecture of the vehicle. Note that unlike in simulations, we use the low-level
controller shipped with the vehicle for trajectory tracking.

Due to the limit of the test ground and in order to test the applicability of the

planner on curvy roads, we have designed a circular road with a radius of 30 m
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for the inner lane and a radius of 34m for the outer lane. The traffic direction
of the inner lane is clock-wise while the outer lane is counter clock-wise. We have
designed a scenario similar to the overtaking example in § 4.4.4, with one simulated
vehicle running (clock-wise) on the inner lane at a constant speed of 2m/s and two
simulated vehicles running (counter clock-wise) on the outer lane at a constant speed
of 3m/s. The desired speed of the ego vehicle as well as its initial speed is set to
5m/s. The goal of this experiment is to observe if the motion planner can work in

real world and plan dynamically feasible trajectories for overtaking.

Results

We have successfully performed multiple field tests. Fig. 4.18a demonstrates the
trajectory of the ego vehicle as well as the predicted trajectories in one of the tests.
We observe that the vehicle successfully performed the overtaking using the space
between two on-coming vehicles. Fig. 4.18b shows the speed and the steering profiles
of the ego vehicle. Note that there is a large steering input at around ¢ = 24 s, which

is caused by the instability of the default tracking controller at low speeds.

4.6 Concluding remarks

We have presented a hybrid MPC design of motion planner for the on-road au-
tonomous driving in normal conditions. Numerous applicative examples are pro-
vided to show the flexibility of the proposed design in handling challenging situa-
tions. Field experiments have also been performed to verify the real-world applica-
bility of the design.
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Figure 4.18: Experiments: (a) The trajectory of overtaking as well as the predicted
trajectories. We mark the positions of vehicles at six different time instants using
natural numbers and color codes (lighter color means further time instant).(b) The
speed profile and the steering profile.
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CHAPTER 5

Control Framework for Convoy

In the previous two chapters, we have considered the control framework for individ-
ual vehicles. We have employed MPC based techniques to plan collision-free and
optimal trajectories for autonomous vehicles and to track reference trajectories.

In this chapter, we will consider the cooperative formation control of multiple
autonomous vehicles in an on-road environment. We will present a hierarchical
framework that employs MPC based approaches as building blocks. The framework
uses a global convoy supervisor to manage the formation and local vehicle controllers
to track the formation-keeping reference trajectories satisfying various constraints
of the vehicles. The reference trajectories of a vehicle are computed from its leader’s
trajectories, based on a pre-defined formation tree. The proposed framework will

be validated using high-fidelity simulations.

5.1 Introduction

Cooperative strategies for groups of autonomous vehicles start to attract atten-
tions from both automotive industry and research institutions, due to their poten-
tial in improving traffic efficiency and reducing road accidents. Previous projects
(PATH |22|, Cybercars-2 |23], CHAUFFER I & II [28] and SARTRE [29]) have
extensively studied a special form of cooperative driving: platoon, in which a group
of vehicles forms a linear formation. It is shown that platooning vehicles brings a
15% to 30% fuel consumption reduction and a 3 to 5 times increase of road through-
put [30].

In this chapter, we consider an extended version of platoon in which multiple
vehicles can enter a formation (also referred to as convoy) with both longitudinal
and lateral separations (e.g. Fig. 5.1). We expect that this extension can find its
applications in cooperative tasks, for instance protecting a VIP vehicle, snowplowing
(see example in [84]), cooperative lane change, etc..

In the robotic and control community, generic formation control problem for mul-
tiple robots has been an active research area for decades. Roughly speaking, there
are three approaches to tackle this problem, namely leader-following, virtual struc-

ture and behavioral approaches. In leader-following approaches [85, 86], a leader is
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V rt_,s

. obs

Figure 5.1: A three-vehicle formation with an obstacle on the road.

selected to track a reference trajectory, while other robots maintain a relative ori-
entations/position offsets from the leader. The virtual structure approach [87, 88|
considers the formation as a rigid structure. Robots are regarded as nodes in a
structure: a trajectory of the structure is first calculated and then transformed to
the reference trajectories of individual robots. In behavioral approaches [89], robots
are prescribed with several behaviors, notably goal seeking, local formation keeping,
collision avoidance, etc. The control of each individual robot is a weighted aver-
age of the control for each behavior. The global group behavior emerges from the
behaviors of individual vehicles.

The literature in robot formation control lays a solid foundation for the formation
keeping problem of multiple autonomous vehicles. However, unique challenges exist
to apply them to on-road driving. Firstly, vehicles are constrained to move in a
highly structured environment. Thus the formation must adapt to the road shape.
Secondly, each individual vehicle as well as the entire convoy must respect traffic
rules and avoid collisions with other traffic participants and other convoy members.
Thirdly, convoys must be flexible so that we can reconfigure them if necessary.

There exists some previous work that tackles the formation keeping problem of
autonomous vehicles on the road. Kato et al. [31] consider a specific convoy problem
with 5 vehicles spreading over two lanes using a leader-following approach. In [30],
a distributed graph-based convoy control algorithm is proposed. Each vehicle mem-
orizes and tracks its neighborhood. The local control input is calculated using the
Laplacian graph method. The advantage of this method is that it is fully decen-
tralized. However, the formation is limited to a rectangle shape and the vehicle
controller is in its simplest form (feedback controller based on first order modeling
of the vehicle, no obstacle avoidance capability, etc.). None of the above mentioned
work satisfies the requirements on intra-formation collision avoidance and convoy
reconfiguration.

We propose and validate a novel on-road convoy control framework based on the
leader-following approach, upon which we propose multiple adaptations to handle
the challenges raised by the on-road driving setting. We adopt a hierarchical design,

composed of a global convoy supervisor and multiple local vehicle controllers. The
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convoy supervisor centrally manages the geometrical model of the convoy and is
able to modify the convoy on-the-fly. Local vehicle controller employs the hierarchi-
cal MPC based architecture to track the reference trajectories computed from the
leader’s trajectory, based on a pre-defined formation tree. We present simulations

to demonstrate that our framework is suitable for actual implementation.

5.2 Control architecture overview

Convoy Supervisor

§ Scenario Scenario - Scen_ario .
1s7'€fi Speciﬁcationv £Q,Tef¢ Speciﬁcationv EZv"if SpeCIﬁcatlonv

Two-level MPC Two-level MPC Two-level MPC

5 q

Figure 5.2: Overview of the convoy control architecture.

Fig. 5.2 gives an overview of the proposed architecture for the convoy control
of autonomous vehicles. The system adopts a hierarchical design with a centralized
convoy supervisor that defines the structure of the formation and monitors the
reconfiguration of the convoy, and local vehicle controllers that control individual
vehicles to maintain the formation and avoid obstacles.

The convoy supervisor maintains a formation tree that describes the leader-
follower relations between vehicles. The root of this formation tree is the leader of the
convoy. The convoy supervisor is also in charge of monitoring the cooperative status
of different vehicles (e.g. whether vehicles have reached the desired positions) and
of re-configuring the formation if necessary. From the implementation perspective,
the convoy supervisor can be implemented as a software module in one or several
vehicles inside the convoy, and can use the communication devices of these vehicles
to manage the convoy.

Local vehicle controllers employ the hierarchical architecture described in § 3.
The formation tree is communicated by the convoy supervisor to individual vehicles
through the scenario specification interface. Local vehicle controllers then track their
desired trajectories &; rf offseted from the trajectories of their leaders &; (assuming
j is the leader of ), in conformity with the formation tree. Other inputs of vehicle

controllers are not shown in Fig. 5.2 while are identical to the architecture in § 3.
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In the following, we will detail the design for the convoy control architecture.

5.3 Convoy supervisor

In this section, we will present in detail the design of the convoy supervisor. § 5.3.1
will discuss the mathematical representation of the convoy. § 5.3.2 will consider the
strategy that allow vehicles in a convoy to avoid collisions with each other. § 5.3.3

will investigate the mechanism for safe modifications of convoy structures.

5.3.1 Convoy model

We consider the convoy in a road-following coordinate system. We assume that the
centerline of a lane v € R? is selected as the reference curve to define the Frenet
coordinate system (s, r), where s is the curvilinear abscissa along 7, and r the lateral
deviation.

We consider a set N' = {0,.., N} of N + 1 vehicles, in which we arbitrarily use
0 as leader; the leader is considered to be a physical vehicle for simplicity in this

thesis, while it could also be a virtual reference point.

Formation tree

To describe the interdependence relations between vehicles in the formation, we
define a formation tree as a directed tree G = (N, E), whose nodes are the vehicles
of N and with a set of edges £ such that the root node is the leader 0. Such a tree
can be represented as an adjacency matrix (g;;) of size (N + 1) x (N + 1), in which
element g;; equals 1 if the edge ¢ — j is in &, and 0 otherwise.

Example 5.1. Consider a triangular formation of the three vehicles as shown in

Fig. 5.1. The formation tree G is given as:

]
S = O O
_ o O =
S O O N

such that vehicle 1 computes its formation control trajectory relative to vehicle 0,
and vehicle 2 computes its trajectory relative to vehicle 1.

We define the target shape of the formation through a (N + 1) x 2 matrix M in
d ,.d
T

which each row vector (s¢,r{) encodes the target position of vehicle i relatively to

vehicle 0.
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Example 5.2. Assuming that the convoy in Fig. 5.1 is coordinated both longitu-

dinally and laterally, the matrix M is given as:

st pd
0 0 0
11-10 3
2\-10 -3

5.3.2 Intra-convoy collision avoidance

hi(s,r) =0 hi(s,r) =0
2
Ai

h2(s,r) =0

Figure 5.3: Road space partitioning with respect to vehicle <.

Our aim is to design an intra-formation collision avoidance strategy such that
vehicles will neither collide in normal on-road driving situations, nor in situations
where the formation is perturbed by obstacles.

Remark that the exact rectangle-shaped safety region of a vehicle is non-differentiable,
and multiple maneuver choices exist for collision avoidance. For instance, consider
a 2-vehicle scenario (e.g., vehicles 1 and 2 in Fig. 5.1): if vehicle 1 approaches ve-
hicle 2, vehicle 2 has four strategies to avoid collision: accelerate to the front of
vehicle 1, decelerate behind vehicle 1, move further to the right or circumvent vehi-
cle 1 from its left. The problem becomes exponentially complex as the number of
vehicles increases due to its combinatorial nature. In [90], a similar problem is han-
dled through the formulation of a mixed integer programming problem, in which
the avoidance decisions are modeled as binary variables. However, the real-time
requirement of our algorithm stops us from adopting the same method.

Here, we adopt a hybrid modeling approach. Let us define an ordered priority
list £ as a permutation of {0,1,..., N}, representing the relative priorities between
vehicles. With a slight abuse of notation, we let £(i) be the rank of i in L, i.e.
L(i) = j if, and only if, ¢ is the j-th element of £. We enforce the following

constraint for any pair of vehicles 4, j € N:

Design constraint: £(i) < L(j) <= s> s‘f
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Under this constraint, the list £ encodes a traffic rule for the formation of vehi-
cles: each vehicle is only responsible for avoiding collisions with the higher-priority
vehicles on the road, i.e with its predecessors in L.

We divide the space outside the collision region into six areas: for a vehicle 4,
we partition the space using three affine functions hl(s,7) = 0, hZ(s,r) = 0 and
h3(s,r) = 0 as shown in Fig. 5.3:

T—T; S — 55

hl(s,r) = — Ar + As +1, (5.1a)

h2(s,r) = rgr” + Sg;i ~1, (5.1b)

(s, r) = S;S" +1. (5.1c)
S

where As and Ar are geometric parameters described in Fig. 5.3. For each vehicle
i, these affine functions define a partition of the (s, r) plane in six sub-spaces labeled
as A7",m € {0,...,5} as shown in Fig. 5.3. By definition, vehicle ¢ is always inside
region A?, and we enforce safety by preventing vehicles with lower priority than ¢
from entering AY. In what follows, we call AY the protected region for i, and the
union of subsets A7, m € {1...5} forms the safe region with respect to i.

For an arbitrary vehicle j, the following logic rule is introduced for all ¢ € N:

L) < L(G)= (sr)e | AP (5.2)
m={1,...,5}

Rule (5.2) effectively forces each vehicle to remain in the safe region with respect
to the vehicles having higher priority in £. In a classic hybrid MPC setting, a binary
decision variable would be required to select in which subspaces A7",m € {1,...,5}
vehicle j should be. In this chapter we adopt a different, simpler approach consisting
of using the shape matrix M to implicitly constrain the choice of the maneuver
choices as follows: Vi,j € N such that £(i) < L(j),

(6= —As A1, > 0) = hl(s,my) <0, (5.3a)
(62 ~As A1 < 0) = B3 (s;,my) <0, (5.3b)
S?i < —As = hi(sj,r;) <0. (5.3¢)

d _ .d d
gi — S5 7 5

from vehicle ¢ in the convoy.

and r?i =7rd— rl‘-‘]/ are the target relative position of vehicle j

where s s

The above constraints defines a subspace of | J,,,_ (1.5} AT". They are linear (and
therefore differentiable).
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Example 5.3. Let £ ={0,1,2} be the priority list for the formation illustrated in
Fig. 5.1. The constraint for vehicle 1 can be computed from (5.3) as h3(s1,71) <0
such that the safe region (relative to vehicle 0) is A2 U A3 U AJ, forcing vehicle 1 to
stay behind vehicle 0. The constraint for vehicle 2 is h(s2,72) < 0 A h2(s2,72) <0,
such that vehicle 2’s safe region is (A3 U A3 U A3) N (A3 U A} U A3): vehicle 2 must
stay behind vehicle 0, and stay on the right-hand or behind vehicle 1.

5.3.3 Dynamic formation modification

We consider the reconfiguration of convoy structure during cooperative autonomous
driving. Let G be a formation tree, M a shape matrix and £ a priority list, all
compatible with respect to the design constraint: we denote by F = (G, M, L) the

corresponding formation. We give the following definition:

Definition 5.1 (Isormorphic formation). Two formations Fj, F»2 are said to be

isomorphic if £1 = Lo.

In this chapter, we only consider isomorphic formation changes: the reconfigura-
tion of M and/or G. Non-isomorphic formation changes that involve the modifica-
tion of £ are not considered in this thesis. The reconfiguration of G only affects the
behaviors of vehicles when the formation is perturbed. Thus we are free to modify
G as long as the tree structure covers all nodes. On the other hand, we cannot ar-
bitrarily modify the shape matrix M due to the design of intra-formation collision
avoidance constraint (5.3). Consider the case of two vehicles i, j with £(i) < L(j),
where vehicle j is in the partition A? of vehicle i. Assuming that we reconfigure the
shape matrix, if the new goal configuration of vehicle j resides in Af, then vehicle j
can plan a trajectory to its goal configuration because both A} and A? belong to the
constraint h?(s,7) < 0. However, if the goal configuration is in A?, vehicle i can-
not plan a feasible trajectory under the current formulation as AZ2 is not a feasible
region under the current constraint h3. It is necessary to set an intermediate goal
configuration at Ag’. Once vehicle j reaches A?, the collision avoidance constraint
must be switched from h? to h? and then vehicle j can continue to move towards
its goal configuration. This issue is a side effect of the space partitioning technique.

We propose the following definitions:

Definition 5.2 (1-step Reachable Element). Consider two elements of the partition
AT and A?; we say A7 is 1-step reachable from A7 if there exists [ € {1,2,3} such
that hé < 0 over A7 U A",

This means we need at least one of the rules (5.3) to be kept during reconfigu-

ration. We can see that A} is reachable from A? and A?; A? is reachable from A},

75



Chapter 5. Control Framework for Convoy

,@ @:@g@j@@

@
©

Figure 5.4: A sequence of 1-step reachable isomorphic transformations.

A? and A}; A3 is reachable from all elements except AY; and symmetrically for the

other areas.

Definition 5.3 (1-step Reachable Formation). Consider two formations M; and
M. We say that Mo is 1-step reachable from My if Vi,j € N such that £(i) <
L(7), the configuration of vehicle j with respect to vehicle ¢ in My is 1-step reachable
from M.

Theorem 5.1. Consider an arbitrary pair of isomorphic formations Fi, Fa, we can

transform from JFj to Fo through a finite sequence of 1-step reachable formations.

The proof is intuitive, since A? is reachable from all elements except AY. There-
fore, any formation can be transformed to a linear formation in a finite number of
steps. With the above theoretical result, in order to reconfigure the formation to
the desired one, we only need to design an intermediate sequence of 1-step reachable

formations. Then we can set up a discrete supervisor to control the transformation.

Example 5.4. We consider a formation of four vehicles. Fig. 5.4 illustrates a
sequence of 1-step reachable isomorphic transformations. The corresponding shape

matrices are given as follows.

My My Ms My
0 0 0 O 0 0 0 3
—-10 3 —-10 0 —-10 -3 0 -3
—-10 -3 —20 0 —-10 3 —-10 3
-20 O -30 0 —-20 O —-10 -3

5.4 Local vehicle controller

We employ the same vehicle controller as described in § 3, with adaptations at the

motion planner level to take into account cooperative constraints.
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Consider a vehicle ¢, recall the nonlinear point-mass model used for motion

planning:

. 1
Si = Ui COS 6971' (1_7,6(8)) 3 (54&)
7

7 = v;sineg ;, (5.4b)
i)i = Q;, (5.4C)
) c(s

€9 = Wi — V; COS €g <1—§“Z>c(s)> . (5.4d)

with & = [s4,74,vs, €9,4] as the state vector. v; is the vehicle speed and eg; is the
heading error with respect to the centerline . The control inputs are u; = [a;, w;],
with the first component being the acceleration and the second one being the yaw
rate. We compactly write the model as & = f(&,u;).

Let T be the prediction horizon of local planners and K be the number of steps.

Consider the following cost function in least-square form:

K
TilEivwi) = Y (I8 = &bepilll, + 1l IR, (5.5)
k=0

where (); and R; are two positive diagonal matrices of proper dimensions. The
reference trajectory &.r; is calculated using the following procedure. Consider
an arbitrary pair of vehicles (j,4) such that gj; = 1. A communication link can
be established between j,7 such that vehicle ¢ periodically receives information on
the planned trajectories of vehicle j. Assume that at time ¢ the most up-to-date
trajectory for vehicle j received by vehicle i is &;([t1,t1 + 1), with ¢ < t: the
trajectory &;([t,t + T]) can be simply estimated by simulating the trajectory from
t1 + T to t + T using the last value of the control. Under the assumption that the
communication delay is small, we expect the estimated trajectory &;([t,t + 1) to
remain close to the actually planned trajectory of vehicle j. The desired position of

1 relative to j can then be calculated as

Sij = 53— sj-l, (5.6a)
rid =rl—rf. (5.6b)

Finally, the reference trajectory &; ..y can be obtained by offsetting the position
components of §;([t,t + 1)) by sfj and rfj and setting other components to zero.

The MPC for planning is formulated as
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min J; (&, wi),

subj. to Vk € [0, ..., K — 1],

& =H(&), (5.7a)
& = FUEE ub), (5.7b)
& e 6, &l uf € [y, al, (5.7¢)
Vi Wi € [~Gat,i, Grat,il, (5.7d)
1 —rFe(sh) > e. (5.7e)
h(&F,ph,) < 0,Yo;, (5.76)
g5 (sisri) < 0,VL(5) > L(i), (5.7g)

where (5.7a) initializes the MPC problem, (5.7b) is the discretized state transition
equation, (5.7c) sets the bounds for vehicle states and controls, (5.7d) sets the lat-
eral acceleration limits and (5.7e) avoids the singularity. Eq. (5.7f) is the obstacle
avoidance constraints written in compact form. Eq. (5.7g) defines the intra-convoy
collision avoidance constraints for all vehicles that are prior than vehicle i, with
a € {1,2,3} a properly chosen index following the rule (5.3). Note that in im-
plementation, (5.7f) and (5.7g) are softened following the procedure described in
§2.3.3.

5.5 Simulations

We have implemented our framework in the high-fidelity robotic simulator We-
bots [68]. The proposed algorithm is coded in C++ and we use the ACADO
toolkit [43] to solve the MPC problem. Simulations were performed on a personal
computer running on a 3.4 GHz Intel Core i7 CPU with 32GB of RAM.

In all simulations, vehicles are equipped with noise-free localization systems and
delay-free communication devices. The desired speed of the formation for both
scenarios is given as vy = 6 m/s. Vehicle parameters are given as: 0 < v; < 10m/s,
lai| < 2.5m/s?, |eg;| < 0.4rad and @; 4 = 2.5m/s?. The parameters used for the
leader are Qo = diag(0,4,2,100), Ry = diag(1,200). The parameters used for the
followers are Q; = diag(1,2,0,100), R; = diag(1,200). The prediction horizon for
all vehicles is T; = 5s. The trajectory re-planning interval is 0.256s. Thus at time
to, a follower has access to the planned trajectory of its leader at time ¢y — 0.256.
The parameters for space partition are given as As = 10m and Ar = 3m. To

quantify the formation error, we introduce e; as the combination of the longitudinal
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formation error and the lateral formation error: e; = /(ef)? + (el)2.
In the following, we consider two scenarios: obstacle avoidance and dynamic

convoy reconfiguration.

5.5.1 Obstacle avoidance
Scenario description

We consider a triangle-shaped convoy (Fig. 5.1) composed by three vehicles. This
convoy design can be used, for instance, for a snowplowing application [84]. The
desired formation remains static during the entire simulation, while vehicles must
avoid on-road obstacles, cross narrow corridors, and at the same time avoid collisions

with other member vehicles of the convoy.

Simulation results

Fig. 5.5 shows the computed trajectories of three vehicles using our framework. We
remark that vehicles are able to quickly form the desired formation, and maintain
it in the absence of obstacles. In the vicinity of obstacles (at the 100-meters mark),
vehicles are able to swerve around them and even temporarily deform the formation
to pass. Fig. 5.6a presents the speed of each vehicle during the simulation. We
observe that vehicle 2 decelerates at ¢ = 13s to avoid vehicle 1 when crossing a
narrow corridor, showing the effectiveness of the proposed intra-formation collision
avoidance strategy. Fig. 5.6b shows the formation errors of vehicle 1 and vehicle 2;
we confirm that error converges quickly to 0 when the road is clear. The computation
time profiles in Fig. 5.6¢c demonstrate the real-time ability of the proposed algorithm

because all of them are under 256 ms, which is the update interval of the motion

planner.
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Figure 5.5: First scenario: trajectories of three vehicles.

5.5.2 Dynamic convoy reconfiguraiton
Scenario description

The second scenario considers isomorphic formation changes for a four vehicle convoy

on a curvy road. The convoy is coordinated both longitudinally and laterally. The
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Figure 5.6: First scenario: (a) vehicle speeds, (b) formation error, (¢) computation

time.

prescribed formation sequence is illustrated in Example 5.4. The time instants when

we switch the formation are respectively ¢t = 15.4s, t = 30.8s and t = 46.5s.
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Simulation results

Fig. 5.7 presents the trajectories of the four vehicles during the experiment. This
simulation demonstrates that isomorphic formation changes can be performed smoothly
while avoiding intra-formation collisions. Moreover, the curvy nature of the road is

handled nicely by our framework.

y(m)

Figure 5.7: Second scenario: trajectories of four vehicles.

Videos of the two experiments are available on-line'.

5.6 Concluding remarks

We have presented a convoy control framework for multiple vehicles on the road.
The proposed framework is composed of a centralized convoy supervisor and multi-
ple local vehicle controllers. The convoy supervisor centrally manages the geomet-
rical structure of the convoy and while each vehicle locally computes a trajectory
compatible with the formation control, using information exchanged through com-
munication. We have made use of logical rules to handle intra-formation collision
avoidance. Moreover, we have designed a strategy for reconfiguration between iso-
morphic formations in a safe and timely manner. High-fidelity computer simulations

have demonstrated the effectiveness of the approach.

Yhttps:/ /youtu.be/QIGIgCmBroA
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CHAPTER 6
Control Framework for Autonomous

Intersection Management

In previous chapters, we have applied MPC to the motion planning and control of
individual vehicles and convoys of vehicles. In this chapter, we apply MPC to coor-
dinate autonomous vehicles at an intersection without traffic lights. We propose a
hierarchical control architecture with a centralized intersection controller and mul-
tiple local planners for individual vehicles. The intersection controller decides the
relative crossing orders of vehicles while planners of vehicles compute trajectories
that respect the prescribed orders using MPC based techniques in a receding hori-
zon fashion. The proposed system maintains the system-wide safety property even
if one or more vehicles suddenly brake. Simulations are performed to illustrate the

benefits of our approach.

6.1 Introduction

Currently, traffic lights are installed in many intersections to coordinate conflicting
traffic flows. However, there is a rising concern on the efficiency and safety of these
systems. Taking advantage of current advances in cooperative autonomous driving
technology, studies have been conducted to explore ideas of autonomous intersections
without traffic lights (Fig. 6.1), as briefly presented below.

Planning-based approaches [32, 33, 34] first compute collision-free trajectories
for all vehicles to cross the intersection without collision; in a second phase, vehicles
are controlled to follow these trajectories. In [32], the optimal speed profiles for a
two-vehicle intersection are analytically studied assuming simple vehicle behaviors,
while the extension to a multi-vehicle intersection is subject to future work. In [33],
constrained nonlinear optimization techniques are employed to plan trajectories for
all vehicles entering the intersection. The control goal is to minimize the total length
of overlapped trajectories. However, the complexity of the optimization problem
renders the solution hard to obtain.

Though planning-based approaches have good properties since trajectories can

be optimized in advance, a major weakness lies in the difficulty to execute the
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Figure 6.1: Hlustration of an intersection

planned trajectories in a changing environment or under control uncertainties. Un-
fortunately, the collision-free property of planning-based approaches essentially relies
on the perfect control assumption. Failing to respect planned trajectories may in the
best scenario trigger an emergency action such as a general stop, or in less favorable
scenarios, lead to collisions among vehicles.

To enable a quick response to changes and uncertainties, reactive approaches [36,
37, 91, 92] have been proposed. Instead of computing complete trajectories, vehi-
cles calculate their current control decisions with respect to other vehicles’ states
and environmental information. In [36], every vehicle uses a navigation function
to decide the current control input. The navigation function includes a collision
avoidance term which enables a vehicle to respond to maneuvers of other vehicles.
A major difficulty of reactive approaches lies in the deadlock avoidance: without
global coordination, it is difficult to get a proof that deadlocks are avoided.

In previous work [93, 94], a generic priority-based scheme is proposed for coor-
dinating a group of mobile robots on fixed and potentially conflicting paths. This
framework separates the robot coordination problem into two parts: high-level plan-
ning of priorities and low-level priority-preserving condition for robot control. High-
level priority assignment decides the relative priority of any two conflicting robots
to cross the conflicting region. The low-level priority-preserving condition provides
an interval of admissible control inputs for each robot that preserves the assigned
priorities, taking into account the states of robots. Under this framework, the pro-

posed overall coordination system is proven to be collision-free and deadlock-free.
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However, robots in this work are controlled using a simple "bang-bang" control
law, which is fuel inefficient and maybe uncomfortable, and as such, unsuitable for
autonomous driving.

In this chapter, we combine the priority-based framework with model predictive
control to smoothly coordinate autonomous vehicles at intersection. The proposed
approach inherits the provably-safe and deadlock-free properties of the priority-
based framework, and produces smooth longitudinal trajectories for each individual
vehicle.

The rest of the chapter is articulated as follows. § 6.2 presents the system model
of autonomous intersection. § 6.3 provides an overview of the hierarchical control
architecture. In § 6.4, we present the design of the high-level intersection controller.
In § 6.5, we present the motion planning for individual vehicles; § 6.7 presents the

simulation results. Finally, § 6.8 concludes the chapter.

6.2 System model

Consider a collection of N' = {1,..., N} autonomous vehicles approaching an in-
tersection as shown in Fig. 6.1. The proximity of the intersection is conceptually
divided into two region: the coordination region and the intersection region. We
assume that vehicles are coordinated within the coordination region. The intersec-
tion region is a subset of the coordination region, where only authorized vehicles

can enter. For each vehicle i € A/, we make the following assumptions:
1. a predetermined path +; € R is given and is perfectly followed;
2. the velocities of vehicles are always non-negative;

3. perfect communication links can be established with other vehicles and with

a roadside unit called the intersection controller;

4. the current states of vehicles can be acquired (through sensors and/or com-

munication);

Let s; € R be the curvilinear coordinate along the path for vehicle i. We ignore
the lateral dynamics of the vehicle and use the double integrator model to describe

the longitudinal dynamics:
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() (f)

Figure 6.2: (a) - (d) are illustrations of interactions of paths that we considered in
this paper. (e) - (h) are the corresponding obstacle regions. (a) is the case of two
vehicles on the same path and (e) is the obstacle region corresponding to (a), given
as {(s1,82) : s1 — so < d}, where d is the minimum separation of two vehicles
on the same path. (b) is the crossing case and (f) is the corresponding obstacle
region given as L1, Hi| X [Lg, Hs|, where [L1, Hq| is the interval on the path 4
where collision with vehicle 2 may occur. (c) is the merging case and (g) is the
corresponding obstacle region given as [L1, Hi| X [Lo, Ha] U {(s1,82) : |s1 — s2] <
d,sy > Hi,so > Hs}. (d) is the diverging case and the corresponding obstacle
region is {(s1,s2) @ s1 —s2 <d,s; < Hi}.

with s;, v; and a; respectively being the position, speed and acceleration of the
vehicle i. We let the state & = [s;, v;] and the control input u; = a;. We bound the

speed and the acceleration:

& ez= [—OO,+OO] X [O,EZ’], (6.2a)
u; € U; == [yz,ﬂz] (6.2b)

We use u; € U; to denote an admissible input signal, which is a function of time
u; : t — u;(t) € U; for t > to and we note U; the space of all admissible control
signals. Let &(t,u;, &(to)), si(t,ui, & (to)) and v;(t, w;, & (o)) respectively denote
the state, position and speed of vehicle i at time ¢, starting from &;(%o).

For two vehicles ¢, j € N, we say that ¢ and j are conflicting if 7; Ny; # 0 and we
define the obstacle region C;; C R? as the set of configurations (s;, s;) where i and j
collide. We assume that the obstacle region is connected. Note that this definition
of the obstacle region is not restricted to the case of crossing paths, but can also be
used for car-following, merging and diverging paths. In the case of non-intersecting
paths, we let C;; = (). This formulation can handle general traffic intersections with
multiple collision points as in Fig. 6.1. Fig. 6.2 illustrates the obstacle regions in

various cases.
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For every pair of vehicles with non-empty obstacle region, one vehicle necessarily
passes before the other, which naturally leads to the notion of priority. For cases
like Fig. 6.2a or Fig. 6.2d, the initial position of the vehicles implies that vehicle 1
always has priority over vehicle 2. In the other cases (Fig. 6.2b and Fig. 6.2¢), a
priority order must be determined. We note ¢ > j if vehicle ¢ has priority over j.
For the sake of simplicity, in the case where C;; = ) we accept either ¢ > j or j > i

as valid, but the choice has no influence on the behaviors of vehicles.

AS2

Ci2
Cor1

S1

o

Figure 6.3: Completed obstacle region for 2 > 1 of Fig. 6.2f.

Each priority relation corresponds to a homotopy class of trajectories. For ex-
ample, there are two homotopy classes of trajectories in Fig. 6.2f: the class of
trajectories passing above the obstacle region corresponds to 2 > 1 while the class
of trajectories passing under the obstacle region corresponds to 1 >~ 2. As a result,
choosing an order of priority is equivalent to restricting vehicles to a given homotopy
class of trajectories. We define C;.; as the completed obstacle region authorizing
all trajectories ¢ > j. Fig. 6.3 illustrates the completed obstacle region Coy 1 in the
case of Fig. 6.2b.

6.3 Control architecture overview

Fig. 6.4 gives an overview of the proposed control architecture for autonomous inter-
sections. The system is designed in a hierarchical way with a high-level centralized
intersection controller and low-level, local motion planners for individual vehicles.
The tracking controllers of vehicles are omitted in the figure for the sake of simplicity.
The intersection controller keeps track of the vehicles that need to coordinate by
incorporating newly arrived vehicles and removing departed vehicles. We assume
that the intersection controller monitors perfectly the states of vehicles through
sensors or V2V communications. The intersection controller assigns priorities to
vehicles in the form of a priority list O. Further details will be provided in § 6.4.
At low-level, each vehicle is controlled locally to cross the intersection and pre-

serve the assigned priorities. We exploit the flexibility of MPC to incorporate
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Figure 6.4: Overview of the control architecture for autonomous intersection.

priority-preserving constraints into the formulation of the optimization problem to
ensure the respect of priorities at the planning level. The detailed formulation will
be provided in § 6.5. The states of vehicles are observed by, or communicated to

the intersection controller and other vehicles.

6.4 Intersection controller

The intersection controller coordinates vehicles inside the coordination region using
priorities. Outside the coordination region, vehicles are assumed to drive safely
by other means such as Adaptive Cruising Control (ACC), Cooperative Adaptive
Cruising Control (CACC), etc. A convenient way to encode the priority assignments
is by using a priority graph, defined as an oriented graph whose vertices are the
vehicles i € N and where the directed edge ¢ — j exists if and only if 7 = j. It
is shown in [93] that using a general oriented graph as a priority graph may cause
deadlocks if the graph has cycles. One possible workaround is to first design a
priority graph, then use a strongly connected component detection algorithm like
Tarjan’s algorithm [95] to detect and remove the potential cycles. In this work, we
use a simpler alternative approach to avoid cycles in the graph: instead of designing
a priority graph from scratch, we choose a permutation of the vehicles of N and use
it as an ordered list of the vehicles, O. Noting (i) and o(j) the respective position
of 7 and j in O, we then construct a priority graph by adding the edge ¢ — j to the
graph (and therefore the priority i > j) if and only if 0(i) < o(j). In other words, O
encodes the order in which the vehicles are allowed to cross the intersection. Note
that for the general case of N vehicles, there are N! possible graphs that can be
constructed using this algorithm, all of them acyclic.

The intersection controller maintains a simple finite-state machine for each ve-
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hicle in the coordination region. The state machine has two states:

Unassigned: Vehicles are unassigned if they have entered the coordination
region but have not yet been assigned priorities. Unassigned vehicles must remain
outside of the intersection region until they become assigned.

Assigned: Vehicles are assigned if they have been added to O. Assigned vehicles
are allowed to enter the intersection region and must preserve the assigned priorities.

The intersection controller works in discrete time. Vehicles that enter the co-
ordination region notify the intersection controller of their presence. It maintains
the list O (for assigned vehicles) and a waiting list for unassigned vehicles. At each
time step, one or several vehicles can be assigned and added to the list according to
a priority assignment policy. Once vehicles leave the coordination region, they are
removed from the priority list and the corresponding priority relations are revoked.

The priority assignment policy that enables the coordination of vehicles at an
intersection is essentially the “brain” of the intersection controller. The design of an
optimal policy, however, is still an open problem. In [96], the time optimal priority

assignment policy is found using Mixed Integer Linear Programming, assuming that

we have full control of vehicle trajectories. However, the assumption is not valid in
this work as each vehicle computes its own trajectory in a receding horizon fashion
under the priority-preserving constraints.

In practice, we find that carefully-designed heuristic policies provide satisfactory
performance. We adopt the Fast First Service (FFS) policy adapted from [93].
For each unassigned vehicle, we simulate its behavior assuming it is added at the
end of the priority list. If, in this case, the vehicle can cross the intersection without
braking while respecting all priorities, then we consider this vehicle as a “fast” vehicle
and effectively append it to the priority list. Note that it is possible that there is
no “fast” vehicle at a given time; in this case, the controller simply waits without
adding new vehicles to the priority list. The FFS policy favors the vehicles that
require to stay in the intersection region for a minimum duration, thus increasing

the efficiency of the system.

6.5 Local vehicle controller

6.5.1 Priority-preserving condition

The priority-preserving condition is deduced in this section. For a pair of vehicles
i,7 € N, j being in a state f? at the current time ¢ = 0, we define a set-valued

function:

Biwi(&)) = {& € i | Vt >0, (si(t, u;,&), 85(t, 1w, €))) ¢ Cmi} (6.3)
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where u is the maximal brake control signal. Therefore, if £ € Bj>i(§?) then vehicle
1 can come to a stop without entering the completed obstacle region even if vehicle
j brakes at its maximum for all £ > 0. We introduce the definition of brake-safe

state:

Definition 6.1 (Brake-safe state). Consider a vehicle i, it is in brake-safe state &
if and only if, for all j =i, &) € Bj>i(§?).

If 7 is in a brake-safe state (or, more simply, i is brake-safe), it can always stop
before violating any of its assigned priorities even if another vehicle brakes at its
maximum. However, since vehicles are controlled digitally, their reactions to a brake
event will at most have a delay of 7, which is the update interval of the control. We

further introduce the definition of brake-safe control as:

Definition 6.2 (Brake-safe control). Assuming that ¢ starts in an initial brake-safe
state &2, a constant control input u; defined over [0, 7) such that Vt € [0,7), u;(t) =

u;, is said to be a brake-safe control if

This condition states that the input w; for [0, 7) is a brake-safe control if the state
of vehicle ¢ at 7 under control wu; is still brake-safe with regard to any vehicle j > ¢
applying a maximal brake command during this period. To simplify the notation,

we write (6.4) compactly as

i € (\Usmi(, €5, 7), (6.5)
gt
where U}, ; is a set-valued function returning the set of all constant control inputs
for [0,7) that are brake-safe with regard to vehicle j and (;,, Ui (€, ]Q,T) is the
intersection of all such sets for all j > 1.

If vehicle i is brake-safe, the set (6.5) is a non-empty open interval that contains
necessarily u;. The length of this interval corresponds to the leeway vehicle ¢ has in
choosing a control.

For assigned vehicles, the brake-safe condition (6.5) must be respected during
the entire crossing so that they always respect the assigned priorities.

For unassigned vehicles, default priority relation exists. Notably, an unassigned
vehicle should remain brake-safe with regard to the front vehicle if it exists. We

denote this condition as
Ui € up’/‘ev>i(§?7 é‘grezn 7—)7 (66)
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where &,y is the state of the preceding vehicle. At the same time, it must maintain
brake-safety with regard to the entry of the intersection region: it cannot enter the
intersection region unless it is assigned. Let Fj; be the curvilinear coordinate of the
entry of the intersection zone for vehicle . Maintaining brake-safety with regard to
E; can be considered as maintaining brake-safe with regard to a virtual vehicle v

stationed at E;
u; € uV>—i(§7?7 5197 T)7 (67)

where ¢Y = [E;, 0] is the state of the virtual vehicle.

Remark that the definition of brake-safe control seems to assume that the other
vehicles brake at their maximum. However, since the dynamics of the system is
monotone [97], condition (6.4) in fact ensures that future states of vehicle ¢ will still

be brake-safe regardless of the actual control applied by the other vehicles.

6.5.2 MPC formulation

Let T denote the length of prediction horizon and 7 be the update interval of the
control. We have T'= K7 with K being the total discretized steps.

We let uf, vf, sf and {f respectively represent the control, speed, position and

state of vehicle ¢ at time k7. The discrete-time state equation can then be given by
€1 = Adgh 1 Bl (6.8)
where A% = (}7) and BY = (27°).

The longitudinal trajectory of a vehicle ¢ can be generated using the following
MPC formulation:

K
min J;(¢, u;) = min > Li(&F, uf) (6.9)
7 Uq k:o

subject to Vk € [0, ..., K],

&i(0) = &, (6.10a)

& € Ziuf € U, (6.10b)

& = Al + By, (6.10¢)

uf e ﬂUj>i(§f,§;€7T), if the vehicle is assigned, (6.10d)
=i

ul € Uprepsi(EF, éf,frev? T) ﬂL{VH(ff, ¢k 1), if the vehicle is unassigned, (6.10e)
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where J; denotes the cost function to be minimized by selecting a proper sequence
of control input uf, k = 0,..., K. £; denotes is running cost during the interval 7.

We may select a quadratic running cost as
L8 = qin(vf = of)? + gip(u)? (6.11)

where the first term is the efficiency cost (gap between the current speed and the
target speed) and the second term penalizes the control signal. We may consider
other metrics to evaluate the cost rather than the one proposed here. (6.10a)
and (6.10b) respectively define the initial condition and the boundary constraints.
Equation (6.10c) is the state transition constraint that describes the time-dependent
evolution of the system. We enforce the priority-preserving constraint at each time
step k =0,..., K in (6.10d) and (6.10e).

Remark that it is not necessary to enforce the priority-preserving constraint at
every time step in the prediction horizon, because only the constraint at the first
time step is required to guarantee the output to be priority-preserving. However,
we opt to enforce constraints at the future time steps since it allows the vehicle to
react earlier to possible priority violations in the future. Such enforcement requires
the knowledge of 5;‘? for k € [0, ..., K]. We have assumed that each vehicle knows the
current states of its prior vehicles. The future states of prior vehicles can be esti-
mated by using prediction models, or simpler, by exchanging intentions (previously

computed trajectories) using V2V communication.

6.6 Theoretic results for the proposed design

The proposed control architecture has the following properties:

Theorem 6.1 (Recursive feasibility). The optimization problem (6.9) is recursively

feasible if the current vehicle state is brake-safe with regard to prior vehicles.

The proof is intuitive. A vehicle in brake-safe state ensures that there exists a
feasible control input at time 7 regardless of other vehicles’ maneuvers. Thus the

MPC problem will also be feasible at time 7.

Theorem 6.2 (Robust safety). Even if one or more vehicles fail to respect the

computed trajectories and perform emergency brakes, the system is still safe.

The reason is that the maximal brake command w,; is a brake-safe control. Thus

the system remains safe. Detailed proof is available in [98].

Theorem 6.3 (Deadlock-freeness). All vehicles eventually quit the intersection.
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In [98], it is shown that if there is no cyclic priority relations, then the system
is deadlock-free. Since we use a cycle-free priority list O to encode the priority

relations, then no deadlock will occur.

6.7 Simulation

Scenario description

100 T T
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0 25 50 75 100
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Figure 6.5: Intersection layout for simulation

We illustrate the approach through simulation with a simple intersection illus-
trated in Fig. 6.5. We consider a system of three vehicles labeled by numbers 1, 2
and 3. Vehicle 1, 2 and 3 drive respectively with the direction of West-East, South-
North and North-South. We determine the priorities as 1 > 2 and 1 > 3. The
priority relation between vehicle 2 and vehicle 3 are not relevant since their paths
do not intersect. Vehicles start at position s; = so = s3 = 0. Their dynamics are
supposed to be identical such that V; = [0, 8] m/s and U; = [—3,2] m/s°. The initial
velocities of three vehicles are set to 8 m/s. The parameters of the cost function

are set to vf =8m/s, ¢i1 =1and g2 =3.

Simulation results

In the simulation, the duration of a time step is set to 7 = 0.2s and the prediction
horizon is set to T' = 3s.

We run simulations with two different scenarios: in the first scenario vehicle
1 crosses the intersection at its desired speed; in the second scenario, vehicle 1

performs an emergency braking with u; = —3m/s? between t = 2.6s and t = 5.2s.
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Fig. 6.6 illustrates the system trajectories of two scenarios in the position space.
We observe that in both scenarios the system trajectories do not intersect with the
obstacle region. Fig. 6.7 and Fig. 6.8 are respectively the speed and acceleration
profiles for the two scenarios. We observe that the proposed MPC scheme generates
smooth longitudinal trajectories for vehicles. Safety is guaranteed in both scenarios.
In the second scenario, vehicle 2 and vehicle 3 adapt their speeds when vehicle 1
performs an emergency brake to avoid collisions.

A video is available' to illustrate the capacity of the proposed scheme in handling

a continuous flow of vehicles using the proposed priority assignment method.

Yhttps:/ /youtu.be/3iIHGNgW61-s
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Figure 6.6: Position space of three vehicles in the simulation. Subfigure (a) shows the
system trajectory as well as the obstacle region in the normal driving case, subfigure
(b) shows the system trajectory when the vehicle 1 performs an emergency brake.
The interval of emergency brake is colored in red.
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Figure 6.7: Speed and acceleration profiles for the first scenario. Vehicle 2 and
vehicle 3 decelerate to yield passage to vehicle 1. The speed profiles of all vehicles
are smooth.
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Figure 6.8: Speed and acceleration profiles for the second scenario. Vehicle 1 is forced
to perform an emergency brake. Vehicle 2 and vehicle 3 adapt correspondingly their
speed to avoid collision.
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6.8 Concluding remarks

We have presented a hierarchical control architecture for autonomous intersections.
The architecture is comprised of a centralized intersection controller for priority as-
signment and local motion planners for individual vehicles that are configured to re-
spect the priorities. The integration of priority-based framework with MPC ensures
individual vehicles to have smooth trajectories and the system to be deadlock-free

and robustly safe.
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CHAPTER 7

Conclusions and perspectives

In the last decade, autonomous driving has been attracting more and more atten-
tions from both industrial actors and academic institutes thanks to its capability in
enhancing traffic efficiency and reducing accidents. In this thesis, we have consid-
ered two major challenges in autonomous driving: how to guide vehicles to proceed
in an on-road environment populated with obstacles and governed by traffic rules,
and how to make autonomous vehicles maneuver cooperatively ?

We have partially dealt with these challenges in our thesis. We started with
the first challenge. We presented a hierarchical control architecture that employs
an MPC based motion planner for trajectory generation and another MPC based
tracking controller for trajectory tracking. We demonstrated the capability of this
design in different on-road driving scenario. However, further analysis demonstrated
that the motion planner in this design cannot handle an important category of con-
straints: logical constraints. To cope with this issue, we presented a hybrid MPC
based motion planner that is able to handle both differentiable constraints and log-
ical constraints by formulating the motion planning problem as a Mixed Integer
Quadratic Programming problem. We applied the planner to various scenarios (in-
tersection crossing, obstacle avoidance, overtaking, lane change, etc.) to illustrate
the advantages of this planner.

We responded to the second challenge with two control designs for cooperative
autonomous driving: a control architecture for convoy control of autonomous vehi-
cles and a control architecture for autonomous intersection management. For the
formation control problem, we presented a hierarchical framework with a convoy su-
pervisor to manage and reconfigure the formation and local MPC based controllers
to track the formation-keeping reference trajectories while satisfying various con-
straints. We made use of logical rules to handle intra-formation collision avoidance
and proposed a strategy for reconfiguration between isomorphic formations in a
safe and timely manner. For the autonomous intersection management problem, we
adopted the priority-based coordination framework and separated the autonomous
intersection management problem into a priority assignment problem and a vehicle
control problem. A centralized intersection controller is designed to assign priori-

ties to incoming vehicles following a priority assignment policy. Local MPC based
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vehicle planners generate optimal trajectories while respect the assigned priorities.
The proposed design ensures the system to be safe to unexpected events (emergency

braking) and allow vehicles to cross the intersection safely.

Perspectives

Hybrid MPC based planner

The hybrid MPC based planner uses a linear point mass model in the formulation of
model predictive control problem. This model is suitable if the longitudinal motion
dominates the lateral one, for example when driving on highways or on urban arterial
roads. However, for some applications, a nonlinear vehicle model might be more
desirable. Future work will investigate the applicability of combining the feedback
linearizion with the MIQP formulation. Another important assumption in this paper
is that the vehicle is driving on road segments with small curvature. For large road
curvatures, the current model can be imprecise. This issue should be investigated
in the future.

We have not considered in detail the problem of estimating the trajectories of
surrounding obstacles. Constant velocity assumption is used in this work. However,
uncertainties in estimation can raise from sensor noises and hard-to-estimate inten-
tions of other traffic participants. It will be useful to investigate the integration of
probabilistic trajectory predictions of obstacles with the motion planner. Finally,

the design requires more validation in simulations and field experiments.

Control framework for convoy

More work can be done to enhance the control design for vehicle convoys. The
collision avoidance rules can be further analyzed and enhanced. It will also be useful
to consider high-level decision-making process for reconfigurations of convoys and
to investigate algorithms that can compute automatically the formation sequences
from an initial formation to a desired one. Finally, we should evaluate this approach

using real vehicles and under realistic perception and communication conditions.

Control framework for autonomous intersection management

We adopted a simple Fast First Service policy for priority assignment, more sophisti-
cated policies that take into account parameters like queue lengths or vehicles idling
time can be developed. Furthermore, the proposed framework can also be extended
to more complex intersection geometries like roundabouts, or multiple intersections.

Finally, field experiments of the proposed architecture will also be beneficial for
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understanding the impacts from noisy perception, unreliable communication and

nonlinear vehicle dynamics on the autonomous intersection management.
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Résumés en Francais

Résumé

La conduite autonome a attiré une attention croissante au cours des derniéres décen-
nies en raison de son potentiel impact socio-économique, notamment concernant la
réduction du nombre d’accidents de la route et ’amélioration de I'efficacité du trafic.
Grace a l'effort de plusieurs instituts de recherche et d’entreprises, les véhicules au-
tonomes ont déja accumulé des dizaines de millions de kilométres parcourus dans
des conditions de circulation réelles. Cette thése porte sur la conception d’une ar-
chitecture de contréle pour les véhicules autonomes et coopératifs dans 'optique de
leur déploiement massif. La base commune des différentes architectures proposées
dans cette theése est le Controle-Commande Prédictif, reconnu pour son efficacité
et sa polyvalence. Nous présentons tout d’abord une architecture classique de con-
trole hiérarchique, qui utilise la commande prédictive pour planifier un déplacement
(choix de trajectoire), puis déterminer un contréle permettant de suivre cette tra-
jectoire. Toutefois, comme nous le montrons dans un deuxiéme temps, cette archi-
tecture simple n’est pas capable de gérer certaines contraintes logiques, notamment
lites aux régles de circulation et & ’existence de choix de trajectoires discrets. Nous
proposons donc approche hybride de la commande prédictive, que nous utilisons
pour développer une architecture de contréle pour un véhicule autonome individuel.
Nous étudions le probléme de contréler un ensemble de véhicules autonomes circu-
lant en convoi, i.e. maintenir une formation prédéterminée sans intervention hu-
maine. Pour ce faire, nous utilisons a nouveau une architecture hiérarchique basée
sur la commande prédictive, composée d’un superviseur de convoi et de controleurs
pour chaque véhicule individuel. Enfin, nous proposons encore une architecture pour
le probléme de coordonner un groupe de véhicules autonomes dans une intersection
sans feux de circulation, en utilisant un contréleur d’intersection et en adaptant les
controleurs des véhicules individuels pour leur permettre de traverser 'intersection

en toute sécurité.

Introduction

Ce chapitre d’abord explique en détail les notions importantes de cette thése: la
conduite autonome et la conduite coopérative. Ensuite il introduit les deux questions

qu’on tente de répondre dans cette thése:



Bibliography

e Comment concevoir un cadre de controle basé sur la commande prédictive pour
une conduite autonome qui peut prendre en compte a la fois des contraintes

logiques et des contraintes différentes?

e Comment développer des cadres de controle pour des applications de conduite

coopérative qui répondent & leurs défis spécifiques?

A la fin d’introduction, on énumere les contributions de cette thése.

Préliminaire

Dans ce chapitre, on présente quelques résultats préliminaires utilisés dans le reste
de la these. On présente les systémes de coordonnées qu’on va utiliser tout au long
de cette thése. On étudie la modélisation dynamique du véhicule. Plusieurs modéles
de véhicules simplifiés sont présentés et discutés. Enfin, on donne une présentation

générique des méthodes de commande prédictive.

Commande prédictive pour la conduite autonome

Ce chapitre présente la conception d'un cadre de contrdle non linéaire basé sur la
commande prédictive pour la conduite autonome. On considére une conception
hiérarchique qui décompose le contréleur en un planificateur de trajectoire et un
controleur de suivi de trajectoire. Au niveau de la planification, la commande pré-
dictive est utilisée pour calculer des trajectoires de référence. Au niveau du suivi de
trajectoire, un contréleur de commande prédictive basé sur le modéle de la bicyclette
cinématique calcule les entrées de contréle qui suivent les trajectoires de référence

du planificateur. Des simulations sont effectuées pour valider I'approche.

Commande prédictive pour la conduite autonome avec

I’'integration des contraints logiques

Dans ce chapitre, On congoit un planificateur basé sur la commande prédictive pour
la conduite autonome avec l'intégration des contraintes logiques. On formule le
probléme de génération de trajectoires comme un programme quadratique mixte
entier. Cette formulation peut étre résolue efficacement en utilisant des solveurs
largement disponibles, et les trajectoires obtenues sont garanties d’étre globalement
optimales. On applique le cadre & plusieurs scénarios de conduite autonome qui sont
encore largement considérés comme des défis, comme 1’évitement d’obstacles avec

de multiples choix de manoeuvre, le croisement, le dépassement avec le trafic venant

116



en sens inverse ou la prise de décision optimale. Les résultats de simulation et les
expériences de terrain démontrent I'efficacité de 'approche et son applicabilité en

temps réel.

Cadre de controle pour convoi

Dans ce chapitre, on étudie le contrdle coopératif de la formation de plusieurs
véhicules autonomes dans un environnement routier. On présente un cadre hiérar-
chique qui utilise une approche fondée sur la commande prédictive. Le cadre utilise
un superviseur global de convoi pour gérer la formation et les contréleurs de véhicules
locaux pour suivre les trajectoires de référence qui maintiennent la formation et sat-
isfie diverses contraintes. Le cadre proposé sera validé & 'aide de simulations de
haute fidélité.

Cadre de controéle pour la gestion d’intersection automa-
tisée

On applique la commande prédictive pour coordonner des véhicules autonomes a
une intersection sans feux de circulation. On propose une architecture de controéle
hiérarchique avec un contréleur d’intersection et plusieurs planificateurs locaux pour
les véhicules individuels. Le controleur d’intersection décide des ordres de traversée
pour des véhicules tandis que les planificateurs de véhicules calculent des trajec-
toires qui respectent les ordres prescrits. Le systéme proposé maintient la propriété
de sécurité a ’échelle du systéme méme si un ou plusieurs véhicules freinent brusque-

ment. Des simulations sont effectuées pour illustrer les avantages de notre approche.

Conclusion et perspectives

Ce chapitre conclut la thése en rappelant les contributions et présentant les perspec-

tives.
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accumulé des dizaines de millions de kilométres
parcourus dans des conditions de circulation
réelles. Cette thése porte sur la conception
d'une architecture de contrdle pour les véhicules
autonomes et coopératifs dans I'optique de leur
déploiement massif. La base commune des
différentes architectures proposées dans cette
these est le Contréle-Commande Prédictif,
reconnu pour son efficacité et sa polyvalence.
Nous présentons tout d'abord une architecture
classique de contrdle hiérarchique, qui utilise la
commande  prédictive  pour planifier un
déplacement, puis déterminer un controle
permettant de suivre cette trajectoire. Toutefois,
comme nous le montrons dans un deuxieme
temps, cette architecture simple n'est pas
capable de gérer certaines contraintes logiques,
notamment liées aux regles de circulation et a
I'existence de choix de trajectoires discrets.
Nous proposons donc approche hybride de la
commande prédictive, que nous utilisons pour
développer une architecture de contréle pour un
véhicule autonome individuel. Nous étudions le
probléme de contréler un ensemble de véhicules
autonomes circulant en convoi, i.e. maintenir
une formation prédéterminée sans intervention
humaine. Pour ce faire, nous utilisons a
nouveau une architecture hiérarchique basée
sur la commande prédictive, composée d'un
superviseur de convoi et de contrOleurs pour
chaque véhicule individuel. Enfin, nous
proposons encore une architecture pour le
probléme de coordonner un groupe de véhicules
autonomes dans une intersection sans feux de
circulation, en utilisant un  contrdleur
d'intersection et en adaptant les contrdleurs des
véhicules individuels pour leur permettre de
traverser l'intersection en toute sécurité.

Mots Clés

Voiture autonome, commande prédictive,
planification de trajectoire, convoi,
intersection automatisé

Abstract

Autonomous driving has been gaining more and
more attention in the last decades, thanks to its
positive social-economic impacts including the
enhancement of traffic efficiency and the
reduction of road accidents. A number of
research institutes and companies have tested
autonomous vehicles in traffic, accumulating
tens of millions of kilometers traveled in
autonomous driving. With the vision of massive
deployment of autonomous vehicles,
researchers have also started to envision
cooperative  strategies among autonomous
vehicles. This thesis deals with the control
architecture design of individual autonomous
vehicles and cooperative autonomous vehicles.
Model Predictive Control (MPC), thanks to its
efficiency and versatility, is chosen as the
building block for various control architectures
proposed in this thesis. In more detail, this
thesis first presents a classical hierarchical
control architecture for individual vehicle control
that decomposes the controller into a motion
planner and a tracking controller, both using
nonlinear MPC. In a second step, we analyze
the inability of the proposed planner in handling
logical constraints raised from traffic rules and
multiple maneuver variants, and propose a
hybrid MPC based motion planner that solves
this issue. We then consider the convoy control
problem of autonomous vehicles in which
multiple vehicles maintain a formation during
autonomous driving. A hierarchical formation
control architecture is proposed composing of a
convoy supervisor and local MPC based vehicle
controllers. Finally, we consider the problem of
coordinating a group of autonomous vehicles at
an intersection without traffic lights. A
hierarchical architecture composed of an
intersection controller and multiple local vehicle
controllers is proposed to allow vehicles to cross
the intersection smoothly and safely.

Keywords

Autonomous vehicle, mode predictive control,
motion planning, convoy, autonomous
intersection management
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