
A Web Service for Efficient Ontology Comparison

 James Z. Wang Farha Ali Rashmy Appaneravanda
Department of Computer Science
Clemson University, Box 340974
Clemson, SC 29634-0974, USA

+1-864-656-7678
{jzwang, fali, rappane}@cs.clemson.edu

Abstract

With the growing access to heterogeneous and
independent data repositories, determining the semantic
difference of two ontologies is critical in information
retrieval, information integration and semantic web
services. In this paper, we develop a web service for
ontology comparison based on our proposed senses
refinement algorithm, which builds a senses set to
accurately represent the semantics of the input ontology.
The senses refinement algorithm automatically extracts
senses from the electronic lexical database WordNet
(locally installed or online), removes unnecessary senses
based on the relationship among the entity classes of the
ontology, and specifies relations and constraints of the
concepts in the refined senses set. The senses refinement
converts the measurement of ontology difference into
simple set operations based on set theory, thus ensures
the efficiency and accuracy of the ontology comparison.
Our experimental studies show that the proposed senses
refinement algorithm outperforms the naive algorithm in
terms of efficiency and accuracy. We believe our web
service is the first available online measurement tool for
ontology comparison.

1. Introduction

The growth of World Wide Web as a knowledge
repository has invigorated research for automatic
extraction of knowledge from the Web. Recent studies
have led to the tremendous success in semantic web [1]
in which data can be automatically processed by software
agents. Among all essential components of the semantic
web, ontology plays the most important role since it
makes the extraction and formalization of semantics
possible. Ontology is an explicit formal specification on
how to represent the objects, concepts and other entities,
which are assumed to exist in some area of interest, and
the relationships among them.

Much work related to ontology has been done in
different areas including ontology presentation,
construction and integration. Some researchers focus on
defining common languages for ontology presentations
[2 , 3 , 4]. The others build ontologies for different
applications [5 , 6 , 7]. The concepts in ontology are
represented in natural language words. As meaning of
words and understanding of concepts differ in different
communities, different users might use the same word for
different concepts, or use different words for the same
concept, or they might make different ontological
assumptions about their concepts. Such possible
heterogeneity causes problems in interoperability of
knowledge resources. Due to the heterogeneity and
independency of the data sources and data repositories,
measuring the semantic similarity of two different
ontologies is critical in information retrieval, information
integration and semantic web queries [8, 9, 10, 11, 12].
Especially when P2P semantic web services become
popular [13, 14], it is necessary to provide an online tool
for efficiently measuring the semantic similarity of two
ontologies. The semantic web agents in P2P semantic
network may use the tool to make query routing decisions
based on the semantic similarity of the ontologies
provided by semantic web services. Currently there is no
such tool available on internet due to the complexity of
existing ontology comparison algorithms and certain
requirement of human involvement in these algorithms.

In this paper, we fill the void by developing a web
service for ontology comparison based on a novel senses
refinement algorithm, which builds senses sets to
accurately represent the concepts and semantic
constraints of the input ontologies. The rest of this paper
is organized as follows. We first discuss the background
and existing approaches to ontology similarity problem in
section 2. Then we give the formal definition of
ontology difference based on set theory in section 3. We
propose our senses refinement (SR) algorithm and

discuss its advantages in section 4. In section 5, we use
experimental studies to prove the efficiency and accuracy
of our proposed senses refinement algorithm. We discuss
the web service implementation issues in section 6.
Finally we give our conclusion and discuss the future
work in section 7.

2. Background and existing approaches

Recent studies in semantic web have emphasized on
using ontologies and semantic similarity functions as
mechanisms for directing queries across heterogeneous
information repositories. Several approaches have been
proposed to deal with the heterogeneity of ontologies.
One approach is ontology integration by mapping the
different ontologies into a more generic ontology [15,
16], or by vocabulary heterogeneity resolution [17, 18] of
various ontologies. Once ontologies are integrated, the
semantic similarity of entity classes is typically
determined as a function of the path distance between
terms in the hierarchical structure underlying this shared
ontology [19 , 20]. The semantic similarity of entity
classes within the shared ontology can also be calculated
using feature-matching [21] based on characteristics of
objects or information content [9, 10] based on
information theory.

There are two problems existing in ontology
integration approaches. First, building a shared ontology
is a very complicated process which is not suitable for
online semantic web query processes. Second, these
methods are designed to compare entity classes within
the ontologies, yet no method has been proposed to
measure the semantic similarity of two ontologies.
Determining the semantic similarity of two ontologies is
as important as measuring the semantic similarity of
entity classes within the ontologies. Measuring the
semantic similarity between two ontologies can help peer
grouping and query routing in P2P semantic web
services, as well as identifying potential collaboration in
research areas such as GIS and bioinformatics.

The shared ontology idea has been taken to its
extreme by SUMO (Suggested Upper Merged Ontology)
[22]. Sanctioned by IEEE, SUMO suggests building a
merged ontology by sharing ideas from all the available
ontologies. The terms in SUMO will be mapped to
WordNet [23] synsets to promote the use of SUMO in
natural language understanding applications. The idea is
that ontology designers will design their ontologies in
natural language and then look for the SUMO entries in
WordNet corresponding to the concepts they use, so that
two different ontology designers will use the same term
for the same concept. SUMO helps reducing the
complexity of concept mapping, yet it does not address
the requirement of ontology comparison. Furthermore,
deriving the integrated ontology from a manual or semi-

automatic process is not suitable for our online semantic
web query process.

Another approach tries to create a computational
model to assess semantic similarity among entity classes
from different and independent ontologies without
constructing a priori a shared ontology [24]. This
approach uses a matching process to establish links
among ontologies while keeping them autonomous.
However it focuses on the semantic similarity of entity
classes and does not allow deep processes due to the
complexity of matching process. Thus using this
approach to measure the semantic similarity of two
ontologies is not practical.

In this paper, after giving a formal definition of
ontology difference based on set theory, we propose an
efficient ontology comparison algorithm that uses a novel
senses refinement algorithm to convert ontology semantic
difference measurement into set operations. The ultimate
goal is to develop an ontology comparison web service
that can not only address the aforementioned problems in
existing approaches, but also provide accurate
measurement of semantic difference of ontologies by
automatically extracting senses from WordNet.

3. Ontology Difference

Most existing studies focus on measuring the semantic
similarity of two entity classes in the same ontology or in
different ontologies. No definition has been made to
address the semantic similarity or difference between two
ontologies. Although most articles use similarity to
describe the semantic distance between a pair of entity
classes in ontologies, we feel the term “difference” fits
more naturally in comparing two different ontologies.

There are many ways to measure the difference
between two given objects. For numeric data values, the
difference can be calculated by using dissimilarity
formulas. Yet for non numeric type of objects, it is
necessary to correlate non numeric data to numeric
values so that the difference can be quantified. Tversky
defined a similarity measurement model [21] based on set
theory so that difference in characteristics between
objects can be evaluated by set operations. This
similarity measurement model is also in agreement to an
information-theoretic definition of similarity [25].

In this paper, we define our ontology measurement
formula based on the normalization of Tversky’s model
to give a numeric measurement of ontology difference.
To facilitate set operations, we use senses set to
summarize the semantics of the ontology. A senses set
for an entity class is a set of synonym words denoting the
concept of the entity class. A senses set for an ontology
is obtained by extracting synonym words related to the
ontology semantics from the senses sets of all concepts in
the ontology. Assume the senses set of Target ontology

is T and the senses set of Source ontology is S. The
difference of set T from set S, denoted by ST − , is
defined as

}|{ SxTxxST ∉∧∈=−
We use cardinality of the senses set to correlate the

non numeric ontology semantics into numeric value. The
cardinality of set ST − indicates how many distinct
synonym words existing in Target senses set T are not in
Source senses set S. The cardinality of set T represents
the number of distinct synonym words in Target senses
set T. Thus the semantic difference between two
ontologies can be defined by function),(STD in
following equation:

||

||
),(

T

ST
STD

−= (1)

Based on Equation 1, we have 1),(0 ≤≤ STD . When
there is no common element between sense sets T and S,
i.e., || ST − = ||T , 1),(=STD . On the other hand, if set
T is a subset of set S (ST ⊆), i.e., || ST − = 0, then

0),(=STD .
This ontology difference measurement formula is not

forced to satisfy symmetry property which is preserved
by semantic distance based models [26]. That is, the
semantic difference from ontology A to ontology B may
not be the same as the semantic difference from ontology
B to ontology A. Employing such an asymmetric
measurement is important because we must ensure the
ontology difference evaluations sensible to human
judgments, in which cognitive properties of similarity
play key roles. For instance, assume the senses set of
ontology A and B are SA and SB respectively. If BA SS ⊂ ,
then 0),(=BA SSD and 0),(>AB SSD . 0),(=BA SSD
means semantics existing in ontology A is also in
ontology B. On the other hand, 0),(>AB SSD means that
ontology B includes some concepts that are not present in
ontology A. Thus allowing the asymmetry in semantic
difference of ontologies has significant importance in
information retrieval and semantic web services.
Especially in P2P semantic web services, asymmetric
measurement of ontology difference allows semantic peer
agents make proper decisions not only in self-configuring
the P2P semantic overlay network but also in routing the
semantic web queries. Similar asymmetric measurement
approach is also adopted by some entity class comparison
studies [24].

4. Efficient Ontology Comparison

Our proposed ontology measurement tries to correlate
the non numeric ontology semantics into numeric
cardinality of sets. Using only the concept labels of the
entity classes can not yield accurate ontology comparison
results, because the same concept may be represented by

different words in different ontologies. It is necessary to
discover the senses of the concepts to ensure accurate set
operations. Thus how to efficiently build senses set that
can accurately represent the semantics of the ontology
becomes critical in ontology comparison. We propose a
senses refinement algorithm that satisfies both efficiency
and accuracy criteria.

4.1 Senses Refinement Algorithm

There are many entity classes associated with various
concepts in an ontology. Each concept may have many
senses because the evolution of the natural language has
produced polysemy that the same word denotes more
than one meaning. Yet not all senses of a concept should
be included in the senses set for the ontology. Besides
senses, the relations (“is-a” or “part-whole” relation) of
concepts within the ontology also contributes to the
semantics of the ontology. Furthermore, features of the
entity classes add constraints to the ontology semantics.
To build a senses set to accurately represent the
semantics of the ontology, we have to answer the
following questions:

• How do we automatically obtain the senses set for
a concept in ontology?

• What senses of a concept should be included in
the senses set for the ontology?

• What senses of a concept should be excluded
from the senses set of the ontology?

• How can we represent the relations of concepts in
the senses set for ontology?

In this paper, we take advantage of the electronic
lexical database WordNet as does in SUMO project. The
difference is that we automatically extract the synonym
words and relations from WordNet for our ontology
comparison while they use a manual or semi-automatic
process to derive a shared ontology.

We design a proper programming interface to
WordNet so that the senses for a concept can be
automatically extracted and converted into the data
structure used in our senses refinement algorithm for
senses set construction. Once all senses of the concepts
in an ontology are extracted out of WordNet, a naive
algorithm to build the senses set for the ontology is to
union all senses sets of individual concepts in the
ontology. For instance, assume {C1, C2, …, Cn} are
concepts in ontology O, and {S1, S2, …, Sn} are their
corresponding senses sets extracted from WordNet.
Using the naive algorithm for senses set construction, the
senses set for ontology O can be calculated as

nO SSSS ∪∪∪= L21 .

However this naive approach has some problems.
First, the evolution of the natural language has produced
polysemy that the same word denotes more than one

meaning. Not all senses of a concept should be included
in the senses set for the ontology. Having unrelated
senses in the ontology senses set will diminish the
accuracy of measuring the ontology difference. Second,
having too many unnecessary senses in the senses set
hinders the efficiency of ontology comparison because
larger number of elements in senses set incurs higher
computation cost for set operations. Third, relations
among entity classes in the ontology have to be included
in the senses set so that the semantics of the ontology can
be accurately represented by the senses set. The naive
algorithm for senses set construction does not make any
attempt to include relations in the senses set.

To address the aforementioned problems, we propose
a senses refinement algorithm that refines the senses set
of the ontology based on the semantic relationships
between the parent concepts and the children concepts.
There are two kinds of semantic relationships between
the parent concept and the child concept according to
WordNet. Hyponymy, i.e., “is-a” relation, is the most
common relation used in ontologies. The “is-a” relation
is transitive and asymmetric, and defines a hierarchical
structure in which concepts inherit the entire
characteristics from their superordinate concepts.
Meronymy is the “part-whole” relation in which the child
concept is part of the parent concept. These relations
determine whether a particular sense of a concept should
be included in the senses set of the ontology. Our senses
refinement (SR) algorithm is based on “is-a” relation
since it is the dominate relationship in ontologies. The
algorithm is depicted in Figure 1.

The senses refinement algorithm explores the “is-a”
relations between entity classes in ontology to determine
whether a particular sense of a concept belongs to the
senses set of the ontology. For each parent concept, the
algorithm checks whether one of its senses is a hypernym
of at least one synonym word of its children. If a match
is found, the synonym sets for both the parent concept
and the child concept are added to the senses set of the
ontology. This process repeats until all entity classes in
the ontology are examined. The algorithm returns the
refined senses set of the ontology.

In “is-a” relation, the child concept is a specialization
of its parent concept in the relationship hierarchy. So
each sense of the child concept should be a specialization
of at least one of the senses of the parent concept. The
senses of the child concept that are not the specialization
of any sense of the parent concept do not belong in the
senses set for the given ontology. Similarly any sense of
the parent concept that is not the generalization of any
sense of its children concepts should not be included in
the senses set for the ontology.

For instance, consider the simple ontology depicted in
Figure 2.

The word “java” has three most obvious senses, i.e. a

type of Coffee, an object-oriented programming
language, or an island. Since object-oriented
programming language and island are not specialization
of drink, these senses of java do not belong to the senses
set of this ontology. To further specify the relation
between “drink” and “java”, the senses refinement

Algorithm SR(Ontology O)
begin
 Q = {};
 P = {p | p∈O && p is a parent in ontology O}
 for any P∈p
 P_flag = false;
 Sp = Senses set of p from WordNet;
 C = { c | c is a child of p in ontology O }
 for any C∈c
 C_flag = false;
 Sc = Senses set of c from WordNet;
 for any ∈s Sc
 H = Hypernym set of s from WordNet;
 for any H∈h
 if (∈h Sp)
 C_flag = true; P_flag = true;
 if (h == p)
 x = c + “_is-a_” + p;
 Q = Q ∪ { x };
 else
 Q = Q ∪ { s };
 endif
 endif
 endfor
 endfor
 if(!C_flag)
 Q = Q ∪ { c };
 endif
 endfor
 if (!P_flag)
 Q = Q ∪ { h };
 else
 Q = Q ∪ { p };
 endif
 endfor
 return Q;
end

Figure 1: Senses Refinement Algorithm

Drink

Java

Figure 2: is-a relation.

algorithm changes “java” into “java_is-a_drink” in the
senses set of the ontology.

4.2 Ontology Comparison Based on SR
Algorithm

Using the proposed senses refinement algorithm, we
design a simple ontology comparison algorithm in Figure
3. This algorithm takes two ontologies as the input
parameters and returns their semantic difference in
numeric value.

To further demonstrate the execution flow of our

ontology comparison algorithm, we apply the algorithm
on some simple ontologies and show the steps of senses
refinement and ontology comparison. Assume we have
two ontologies, OntoBeverage and OntoPL, defined by
“is-a” relation hierarchy. OntoBeverage in Figure 4 is a
simple ontology representing two beverages, Java and
Beer. OntoPL in Figure 5 is a simple ontology
representing programming language Java. We further
assume OntoBeverage is the target ontology and OntoPL
is the source ontology.

To compare those two ontologies, we need to get the

refined senses set T for target ontology OntoBeverage
and the refined senses set S for source OntoPL
respectively. First we need to get the concepts and their
senses with associated hypernyms for those two

ontologies. In this example, we only consider first-level
hypernyms, for more accurate results we can use
hypernyms of higher levels. Table 1 contains the
concepts and the senses with the associated hypernyms
for ontology OntoBeverage obtained from WordNet.

Table 1: Senses and Hypernyms for OntoBeverage

To get the refined target senses set T, we examine all

concepts in the ontology starting from the root concept
Beverage. First the senses set is empty, i.e., T = { }.
Then we determine what senses of the concepts should be
included in set T using our senses refinement algorithm.
Looking at the parent concept Beverage and the child
concept Java, the hypernyms of the second senses set of
the child concept Java have common elements with the
senses of its parent concept Beverage, thus the senses set
{beverage, drink, drinkable, potable} for parent concept
Beverage and the senses set {coffee, java} for child
concept Java should be included in the senses set of the
target ontology T. Now T = {beverage, drink,
drinkable, potable, coffee, java}. For the first and the
third senses sets of the child concept Java, their
Hypernyms have no common element with the senses of
the parent concept Beverage, thus those senses for child
concept Java can not be included in set T.

In addition to excluding the unrelated senses of the
concepts, our senses refinement algorithm also specifies
senses to reflect the relationship of child and parent
concepts. Sometimes the synonyms sets for different
senses of a concept contain the same word as the concept
label itself. For example, “java” is the word used for
child concept label in OntoBeverage. Three different
senses sets for concept java can be extracted from
WordNet. Among those three senses sets for java, only
the second senses set can be included in the senses set for
the ontology and the concept label “java” is in this senses
set. In the meantime, the related parent concept label
“beverage” is in the hypernyms set of java. This can be
used to identify the “is-a” relation between concept
“java” and “beverage”. The “is-a” relation can also be

Concepts Senses Hypernyms In Sense
Set?

Beverage beverage, drink,
drinkable, potable

food, nutrient Yes

1. Java Island No

2. coffee, java beverage, drink,
drinkable, potable

Yes

Java

3. Java object-oriented
programming
language,
object-oriented
programing
language

No

Beer Beer brew, brewage No

 Algorithm OntoCmp(OS, OT)
 begin
 S = SR(OS)
 T = SR(OT)

||

||

T

ST
D

−=

 return D
 end

Figure 3: Ontology Comparison Algorithm

Beverage

Java Beer

Figure 4: OntoBeverage

Programming
Languages

Object-oriented
programming languages

Java

Figure 5: OntoPL

used to differentiate “java” from other senses. To retain
the “is-a” relationship in the senses set for ontology
OntoBeverage, we specify sense “java” as “java_is-
a_beverage”. So the senses set for ontology
OntoBeverage is T = {beverage, drink, drinkable,
potable, coffee, java_is-a_beverage}.

Finally, if a concept does not have a single sense that
matches with one of its parents’ senses or a parent does
not have a single sense that matches with hypernyms of
all the senses of its children, we just include the concept
label in the senses set of the ontology. Based on this
rule, “beer” is added into the refined senses set T for
OntoBeverage. Thus, T = {beverage, drink, drinkable,
potable, Coffee, java_is-a_beverage, beer}.

Similarly we can get the concepts and the senses with
the associated hypernyms for source ontology OntoPL
from WordNet. They are presented in

Table 2. Using our proposed senses refinement
algorithm, we can get the refined senses set for source
ontology OntoPL. That is, S = {programming language,
programing language, object-oriented programming,
language, object-oriented programing language,
java_is-a_object oriented programming language}.
Using Equation 1, we get,

1
||

||
),(=−=

T

ST
STD

Table 2: Senses and Hypernyms for OntoPL

Now let’s change the source ontology to another

ontology, OntoDrink, depicted in Figure 6. OntoDrink is
a simple ontology representing some drinks. Now we
want to use this ontology as the source ontology to
compare with the target ontology OntoBeverage shown in
Figure 4.

Table 3 contains the concepts and the senses with the

associated hypernyms for ontology OntoDrink obtained
from WordNet.

Table 3: Senses and Hypernyms for OntoDrink

Using our senses refinement algorithm, we can get the

refined senses set S = {beverage, drink, drinkable,
potable, coffee_is-a_drink, java, cola} for the new
source ontology OntoDrink. As discussed before, we
have already got the refined target senses set T =
{beverage, drink, drinkable, potable, coffee, java_is-
a_beverage, beer}. Using equation 1, we get,

2857.0
||

||
),(=−=

T

ST
STD

These two examples demonstrate how our proposed
ontology comparison algorithm works to measure the
semantic difference of two ontologies based on set
theory. Our ontology comparison algorithm shows the

Concepts Senses Hypernyms In Sense
Set?

Programming
Language

Programming
language,
programming
lanuage

Artificial language Yes

Object-
oriented
Programming
Language

Object-oriented
Programming
Language,
Object-oriented
Programing
Language

Programming
language,
programming
lanuage

Yes

1. Java Island No

2. coffee, java beverage, drink,
drinkable, potable

No

Java

3. Java object-oriented
programming
language,
object-oriented
programing
language

Yes

Concepts Senses Hypernyms In Sense
Set?

1. drink , small indefinite
quantity, small
indefinite amount

No

2. drink,
drinking,
boozing,
drunkenness,
crapulence

intemperance,
intemperateness

No

3. beverage,
drink,
drinkable,
potable

food, nutrient Yes

4. drink body of water,
water

No

Drink

5. swallow,
drink,
deglutition

consumption,
ingestion, intake,
uptake

No

1. coffee, java beverage, drink,
drinkable, potable

Yes

2. coffee, coffee
tree

tree No

3. coffee bean,
coffee berry,
coffee

Seed No

Coffee

4. coffee, deep
brown, umber,
burnt umber

brown, brownness No

1. cola, genus
cola

dilleniid dicot
genus

No Cola

2. cola, dope , soft drink No

Drink

Coffee Cola

Figure 6: OntoDrink

semantic difference between ontology OntoBeverage and
OntoPL is 1. It means even though they are using the
same concept label for one of their concepts, they are
representing very different data. Conversely if we only
look at the concept labels of Ontology OntoDrinks and
OntoBeverage, they seem to be totally different.
However, our ontology comparison algorithm reveals
that the difference between these two Ontologies is just
0.2857. So these two Ontologies represent very similar
concepts, although they have used different concept
labels.

5. Performance study

Accuracy and efficiency are two criteria in evaluating
the online ontology comparison tool. We have done
some experimental studies to evaluate our proposed
senses refinement algorithm in terms of those two
performance metrics. Because there is no precedent
work that measures the semantic difference of two
ontologies (existing studies focus on measuring the
semantic similarity of entity classes in ontologies), we
will compare our senses refinement algorithm with the
naive algorithm for senses set construction discussed in
section 4.1.

5.1 Efficiency of the proposed ontology
comparison algorithm

To evaluate how quickly the proposed ontology
comparison algorithm returns the semantic difference of
two given ontologies, we run the evaluated ontology
comparison tools on some simple ontologies presented in
Figure 7. We choose these Ontologies because most of
their concepts have a lot of senses. Thus the time spent
in senses refinement and senses specification should be

noticeable when our senses refinement algorithm is used
to construct the senses sets for the ontologies.

We implement our ontology comparison tool using
J2SE 1.4.2. For performance comparison, we also
implement an ontology comparison algorithm based on
the naive algorithm for senses set construction. Without
loss of generality, we compare each ontology with itself.
We monitor the processing time for ontology comparison
using different ontology comparison algorithms. The
experimental studies are conducted on a desktop
computer equipped with 1.3GHz Intel Pentium M
processor and 512 MB RAM. The evaluated ontology
comparison tools run as Java application under Windows
XP. The experimental results are depicted in Table 4.

Table 4: Processing times using different ontology
comparison algorithms

Processing Time (milliseconds) Ontology
SR Algorithm Naive Algorithm

Onto 5.1.1 0.06 1.03
Onto 5.1.2 0.32 0.59
Onto 5.1.3 0.06 0.26
Onto 5.1.4 0.12 0.29
Onto 5.1.5 0.14 3.21
Onto 5.1.6 0.08 0.66

We must note that the processing time reported in

Table 4 do not include the time for fetching senses and
hypernyms from the WordNet online, because the
response latencies from WordNet online web server vary
from time to time due to internet traffic and server
workload. Actually, ignoring this time can give a better
assessment on efficiency of the ontology comparison
algorithms.

Figure 7: Ontologies for evaluating efficiency of ontology comparison

 Onto 5.1.4

Java C

Programming
languages

Onto 5.1.3

Building

Library House

Cattle

Onto5.1.2

Animals

Reptiles

Cows Bulls Alligator

Animals

Carnivore Herbivore

Alligators Cattle

Onto 5.1.1

Onto 5.1.5

Device

Dog Tong

Onto 5.1.6

Financial
Institution

Bank

Credit Union

Intuitively the naive algorithm for sense construction
should have better performance in terms of processing time
because it simply computes the union of senses of all
concepts in the ontology. On the other hand, our proposed
senses refinement algorithm needs to eliminate unnecessary
senses by investigating the relationships between concepts.
It also needs to denote the relations in the senses set. All
these processes are more complex than simple union used
in the naive algorithm.

However, the senses refinement algorithm usually
generates much smaller senses set for a given ontology if
the ontology contains a lot of senses. Thus the time for
calculating the ontology difference is reduced. The results
shown in Table 4 have proven that the processing time of
ontology comparison using our senses refinement algorithm
is less than that using the naive algorithm. We must note
here that the ontology comparison algorithm using our
proposed senses refinement algorithm may not always be
faster than that using the naive senses set construction
algorithm if the concepts in the compared ontologies do not
have many different senses. In these cases, the time saving

in comparing the refined senses sets can not compensate the
time that spends on senses refinement.

5.2 Accuracy of the proposed ontology
comparison algorithm

To evaluate the accuracy of the proposed ontology
comparison algorithm in measuring the semantic difference
of ontologies, we run the ontology comparison tool on
some simple ontologies presented in Figure 8. We compare
the measurement results with that obtained by the ontology
comparison algorithm based on the naive algorithm for
senses set construction.

We choose these ontologies because they are very
simple. Thus the accuracy of the ontology comparison can
be easily judged by human observation. The experimental
results are depicted in Table 5. The ontology comparison
results show that our ontology comparison algorithm is
more accurate than the ontology comparison algorithm
based on naive senses set construction. The accuracy
evaluation is based on our subjective judgment since the
ontologies are very simple.

Table 5: Ontology differences using different comparison algorithms

Ontology Difference Value Target Ontology Source Ontology
SR Algorithm Naive Algorithm

Onto 5.2.1 Onto 5.2.2 1.0 0.916

Onto 5.2.2 Onto 5.2.1 1.0 0.818

Onto 5.2.3 Onto 5.2.4 1.0 0.120

Onto 5.2.4 Onto 5.2.3 1.0 0.435

Onto 5.2.5 Onto 5.2.6 0.857 0.3076

Onto 5.2.6 Onto 5.2.5 0.857 0.3076

Figure 8: Ontologies for evaluating accuracy of ontology comparison.

Onto 5.2.2

Beverage

Java Tea

Color

Red White

Onto 5.2.6

Red

Maroon Scarlet

Onto 5.2.5

 Onto 5.2.1

Java C

Programming
languages

Device

Dog Tong

Onto 5.2.3

Canine

Dog Wolf

Onto 5.2.4

Obviously we can tell that Onto 5.2.1 is totally
different from Onto 5.2.2, and Onto 5.2.3 and Onto 5.2.4
represent entirely different concepts. The semantic
difference of Onto 5.2.1 and Onto 5.2.2, and the semantic
difference of Onto 5.2.3 and Onto 5.2.4 are clearly
revealed by the ontology comparison algorithm based on
our senses refinement algorithm. However the ontology
comparison tool based on the naive senses set
construction algorithm shows those ontologies have some
similarity. Especially, Onto 5.2.3 and Onto 5.2.4 are
measured as very similar as shown in Table 5 when the
naive senses set construction algorithm is used.

Onto 5.2.5 and Onto 5.2.6 have some similarity
because Onto 5.2.5 expands one child concept “red” in
Onto 5.2.6. However Onto 5.2.5 gives more special
meaning to concept red while Onto 5.2.6 represents more
general senses of color white and red. When using Onto
5.2.5 as the target ontology and Onto 5.2.6 as the source
ontology, we should not expect that semantic definitions
for scarlet and maroon in Onto 5.2.5 are not included in
senses set of the concept red in Onto 5.2.6. Thus
semantic difference D(Onto 5.2.5, Onto 5.2.6) should be
large since scarlet and maroon contribute 66% of the
concepts in Onto 5.2.5. Our senses refinement algorithm
reveals the difference value of 0.857 while the ontology
comparison based on the naive senses set construction
algorithm shows a very small difference value at 0.3076.

Overall, the experimental results prove that the senses
sets built by our senses refinement algorithm accurately
represent the ontology semantics.

6. Web service for ontology comparison

To provide an online ontology comparison tool, we
integrate our proposed ontology comparison algorithm
into a web service [27], OntoCmpService, which accepts
a pair of ontologies written in OWL and returns a
numeric value to represent their semantic difference. The
web service OntoCmpService make use of the online
electronic lexical database WordNet to generate senses
sets for the input ontologies. We use J2EE SDK from
Sun Microsystems as our development tool.
OntoCmpService is implemented using JAX-RPC. It has
a single interface class OntoIF that specifies the web
service methods exposed to the public.

In OntoCmpService, the exposed method is
ontoCompare which is implemented in the class
OntoImpl. The wscompile tool converts the Web Service
interface to a WSDL file. We use Jena 2.1 Semantic web
framework from HP labs to extract the concept labels and
relationships from the input OWL files. The web service
is deployed using Sun’s Java systems Application Server.
The interactions between the client and our
OntoCmpService are depicted in Figure 9.

When a client requests for the ontology comparison
web service, a WSDL file for OntoCmpService is
returned to the client. The client then uses the stub class
generated from WSDL file to call ontoCompare method
for ontology comparison.

7. Conclusion and future studies

In this paper, we develop a web service for ontology
comparison based on our proposed senses refinement
algorithm, which builds senses sets to accurately
represent the semantics of input ontologies. The senses
refinement algorithm automatically extracts senses from
the electronic lexical database WordNet (locally installed
or online), removes unnecessary senses based on the
relationship among the entity classes of the ontology, and
specifies relations and constraints of the concepts in the
refined senses set. The senses refinement converts the
measurement of ontology semantic difference into simple
set operations based on set theory, thus ensures the
efficiency and accuracy of the ontology comparison. Our
experimental studies show that the proposed senses
refinement algorithm outperforms the naive algorithm in
terms of efficiency and accuracy. We believe our web
service is the first available online measurement tool for
ontology comparison.

The proposed senses refinement algorithm focuses on
“is-a” relations of the entity classes to discover the
semantics of the ontology. Although “is-a” relation is the
most common relation used in ontology, the “part-whole”
relations [28], including “part-of”, “whole-of” and “has-
a” relations, may be used to further define the ontology
semantics. Furthermore, attributes, functions and parts
may be used to denote detailed semantic features about
the entity classes in ontology. We are currently
extending the senses refinement algorithm so that it can
integrate the “part-whole” relations and semantic features
of entity classes into the senses set construction for
ontology comparison.

8. References

[1] T. Berners-Lee, J. Hendler, and O. Lassila. The
SemanticWeb. ScientificAmerican, 284(5):34–43,
2001.

Figure 9: Interactions between client and
OntoCmpService

Client

Sun Java
Application
Server:
OntoCmpService

Request for
OntoCmpService WSDL

Returns the WSDL

Call ontoCompare method

Returns ontology difference

[2] Resource Description Framework (RDF), W3C
Semantic Web Actitity. http://www.w3.org/RDF/

[3] Web Ontology Language (OWL), W3C Semantic
Web Actitity. http://www.w3.org/2004/OWL/

[4] F. van Harmelen, P. F. Patel-Schneider, and I.
Horrocks. Reference description of the daml+oil
(march 2001) ontology markup language.
http://www.daml.org/2001/03/reference.html, march
2001.

[5] C. Schlenoff, A. Knutilla and S. Ray. A Robust
Ontology for Manufacturing Systems Integration. In
2nd International Conference on Engineering Design
and Automation. 1998, Mai, HI.

[6] The Spatial Data Transfer Standard,
http://mcmcweb.er.usgs.gov/sdts/

[7] The Gene Ontology Consortium: Creating the gene
ontology resource: design and implementation.
Genome Research, 11(8):1425-33, August 2001.

[8] N. Guarino, C. Masolo, and G. Vetere, OntoSeek:
Content-Based Access to the Web, IEEE Intelligent
Systems, 14(3), 70-80, May 1999.

[9] Philip Resnik. Semantic Similarity in a Taxonomy:
An Information-Based Measure and Its Application
to Problems of Ambiguity in Natural Language,
Journal of Artificial Intelligence Research (JAIR),
Volume 11, pp. 95-130. 1999.

[10] J. J. Jiang and D. W. Conrath. Semantic similarity
based on corpus statistics and lexical taxonomy. In
Proceedings of International Con-ference on
Research in Computational Linguistics, Taiwan,
1998.

[11] J. Lee, M. Kim, and Y. Lee, Information retrieval
based on conceptual distance in is-a hierarchies.
Journal of documentation 49(2), pp.188-207, 1993.

[12] A. Goni, E. Mena, and A. Illarramendi. Querying
heterogeneous and distributed data repositories using
ontologies. In Proceedings of the 7th European-
Japanese Conference on Information Modelling and
Knowledge Bases (IMKB'97), Toulouse, France,
May 1997.

[13] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. S. A.
Naeve, M. Nilsson, M. Palmer, and T. Risch.
EDUTELLA: A P2P networking infrastructure based
on RDF. In 11th World Wide Web Conference,
Honolulu, Hawaii, USA, May 2002.

[14] Christoph Tempich, Steffen Staab and Adrian
Wranik, REMINDIN': Semantic Query Routing in
Peer-to-Peer Networks Based on Social Metaphors,
The 13th World Wide Web Conference (WWW 2004),
May 2004, New York, USA.

[15] P. Weinstein and P. Birmingham, Comparing
Concepts in Differentiated Ontologies, in 12th

Workshop on Knowledge Acquisition, Modeling, and
Management. 1999, Banff, Canada.

[16] H. Stuckenschmidt, and I. J. Timm, Adapting
communication vocabularies using shared
ontologies. In Proceedings of the Second
International Workshop on Ontologies in Agent
Systems, Workshop at 1st International Conference
on Autonomous Agents and Multi-Agent Systems,
Bologna, Italy, 15-19 July 2002.

[17] V. Kashyap and A. Sheth, Semantic Heterogeneity in
Global Information Systems: The Role of Metadata,
Context, and Ontologies, Cooperative Information
Systems: Trends and Directions, pp. 139-178, M.
Papazoglou and G. Schlageter (eds.), Academic
Press, London, UK. 1998.

[18] E. Mena, A. Illarramendi, V. Kashyap, and A. Sheth,
OBSERVER: An Approach for Query Processing in
Global Information Systems Based on Interoperation
across Preexisting Ontologies. Distributed and
Parallel Databases, 8(2): pp. 223-271, 2000.

[19] M. Bright, A. Hurson, and S. Pakzad, Automated
Resolution of Semantic Heterogeneity in
Multidatabases. ACM Transactions on Database
Systems, 19(2), pp. 213-253, 1994.

[20] C. Collet, M. Huhns, and W. Shen, Resource
Integration Using a Large Knowledge Base in
Carnot. Computer, 24(12), pp. 55-62, 1991.

[21] A. Tversky, Features of Similarity. Psychological
Review, 84(4), pp. 327-352, 1977.

[22] A. Pease, I. Niles, and J. Li, The Suggested Upper
Merged Ontology: A Large Ontology for the
Semantic Web and its Applications. In Working
Notes of the AAAI-2002 Workshop on Ontologies
and the Semantic Web, Edmonton, Canada, July 28-
August 1, 2002.

[23] Christine Fellbaum (ed.), WordNet: An Electronic
Lexical Database. The MIT Press, May 1998.

[24] M. A. Rodriguez and M. J. Egenhofer, Determining
semantic similarity among entity classes from
different ontologies; IEEE Transactions on
Knowledge and Data Engineering. 2003.

[25] D. Lin, An Information-Theoretic Definition of
Similarity (eds.), International Conference on
Machine Learning (ICML’98), Madison, WI, 1998.

[26] R. H. Rada, H. Hili, E. Bicknell, and M. Blettner,
Development and Application of a Metric on
Semantic Nets. IEEE Transactions on System, Man,
and Cybernetics, 19(1), pp. 17-30, 1989.

[27] Online Ontology Comparison,
http://www.cs.clemson.edu/~jzwang/ontocomp.htm

[28] M. Winston, R. Chaffin, and D. Herramann, A
Taxonomy of Part-Whole Relations. Cognitive
Science, Volume 11, pp. 417-444, 1987.

