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P6 P6 MicroarchitectureMicroarchitecture

Tuning GuideTuning Guide

This talk is concerned with processor microarchitecture level performance tuning for
applications written to run on Intel IA-32 architecture platforms. These slides provide detailed
information on how applications can take advantage of the high performance capabilities of
Intel P6 microarchitecture processors and platforms.

It is assumed that the audience of this talk is familiar with performance tuning terminology
and concepts, and have done some high level and assembly language programming.
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Course ObjectivesCourse Objectives
ll Explain IntelExplain Intel®® P6  P6 MicroarchitectureMicroarchitecture Pipeline Pipeline

–– P6P6 microarchitecture microarchitecture is the foundation of Pentium is the foundation of Pentium®®

Pro, Pentium Pro, Pentium IIII and Pentium III processors and Pentium III processors

ll Describe the Memory Architecture andDescribe the Memory Architecture and
Features of P6 Family of ProcessorsFeatures of P6 Family of Processors

ll Highlight Common Application ProgrammingHighlight Common Application Programming
PitfallsPitfalls

ll Recommend Ways of Improving PerformanceRecommend Ways of Improving Performance
for C, C++, or Fortran Applications byfor C, C++, or Fortran Applications by
Avoiding Common PitfallsAvoiding Common Pitfalls

The discussion starts with a review of the P6 microarchitecture design and its implications
for application performance tuning. Detailed description of the P6 microarchitecture - the
foundation of Pentium® Pro processor, Pentium II processor, and Pentium II Xeon™
processor - is given. Each stage of the microarchitecture pipeline is discussed; methods for
exploiting each stage for optimal application performance is exposed.

Common pitfalls that are encountered in the design and implementation of applications for
the P6 microarchitecture processors and platforms are listed. Various methods for avoiding
the pitfalls are also discussed in details. Many examples on how C and IA-32 assembly
language programs can be implemented to avoid the most common pitfalls are given.
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Review of ASC Top-DownReview of ASC Top-Down
Tuning ApproachTuning Approach

Within Intel ASC lab, the microarchitecture level tuning is viewed as one part of a multi-level
tuning methodology.

This section is a review of the ASC top-down performance tuning approach.
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Top-Down 
Approach

Top-Down ApproachTop-Down Approach

llSystem LevelSystem Level
–– ProcessorsProcessors

–– MemoryMemory

llApplication LevelApplication Level
–– AlgorithmAlgorithm

–– SynchronizationSynchronization

llMicro-Architecture LevelMicro-Architecture Level
–– Branch PredictionBranch Prediction

–– Memory LatenciesMemory Latencies

–– NetworksNetworks

–– Disks / InterconnectsDisks / Interconnects

–– ThreadingThreading

–– Good & Bad APIsGood & Bad APIs

–– DependenciesDependencies

–– Data AlignmentsData Alignments

Intel ASC methodology emphasizes a three level approach to performance tuning - System
Level, Application Level, and Microarchitecture Level performance tuning.

System level tuning involves making changes to the Operating System and the hardware
platform. At the system level, processors, memory, disk, and network devices are added as
needed for optimal performance and price/performance of applications. Devices are also
tuned and configured to meet the demand of applications running on the system.

Application level tuning involves making changes to an application to eliminate bottlenecks
and inefficiencies inherent in the application code. Locks are implement in ways that
minimizes their serialization of application execution. Smarter heap allocations and de-
allocations are implemented to minimize overheads. Better Application Program Interface
(API) calls are chosen to minimize application serialization and API call overheads. Also,
opportunities for multi-threading of applications should be explored at this level.

Microarchitecture level tuning involves implementation of applications in ways that allow
them to take full advantage of processor hardware. Applications are written to avoid events
that cause the processor to block or become inefficient.

These three levels form the cornerstone of an iterative tuning methodology. A top-down
approach to the three level tuning is emphasized. The methodology requires that the System
level tuning is done first followed by the Application level tuning and finally the
microarchitecture level tuning. The work at each level continues until no performance gain
can be achieved. At the end of the microarchitecture level, the process start again from the
System level.
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Top-Down: InteractionsTop-Down: Interactions

ll Close to 100% Processor UtilizationClose to 100% Processor Utilization
–– High number of branch High number of branch mispredictionsmispredictions

–– High memory access latenciesHigh memory access latencies

–– Instruction dependenciesInstruction dependencies

ððApplication can be optimized with Micro-Application can be optimized with Micro-
architecture Level Tuningarchitecture Level Tuning

ll Low Processor UtilizationLow Processor Utilization
–– System pagingSystem paging

–– High context switch rateHigh context switch rate

–– High I/O LatenciesHigh I/O Latencies

––  I/O throughput approaching I/O device limits I/O throughput approaching I/O device limits

–– Serialization of requests or application executionSerialization of requests or application execution

ððFix with System or Application TuningFix with System or Application Tuning
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Performance issues can be in one of two states as far as the processor is concerned - either
the processor is the bottleneck, or the processor is not the bottleneck in the system.

The processor cannot be the bottleneck in a system if the system has a CPU utilization less
than 100% (or very close to 100%). A system without 100% processor utilization has
bottlenecks elsewhere; the bottleneck could be in the I/O subsystem, the Operating System,
or the application. The performance of applications that exhibit less than 100% processor
utilization can be improved with system and application level tuning. Minimal or no
performance gains can be expected from microarchitecture level tuning for such
applications.

The processor is the bottleneck for an application when the application has a processor
utilization of 100%. Such an application may benefit from microarchitecture tuning that
results in a more efficient execution of the application instruction stream.

An application may have 100% CPU utilization because it is executing too many instructions
per operation. The performance of such an application may be remedied by re-writing the
application to use better algorithm and API calls, and incur less Operating System
overheads.

It is possible to continue microarchitecture level tuning of an application until the processor is
no longer the bottleneck. At such point, it is prudent to move the tuning effort to System and
Application level tuning.
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P6 P6 MicroarchitectureMicroarchitecture

This section starts the discussion on the design of P6 microarchitecture.
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Overview of P6Overview of P6
MicroarchitectureMicroarchitecture

ll Symmetric multi-processor supportSymmetric multi-processor support
–– 1-8 CPUs SMP ready1-8 CPUs SMP ready

ll Super-scalar, super-pipelined, dynamic executionSuper-scalar, super-pipelined, dynamic execution
corecore

–– Out-of-order executionOut-of-order execution

–– Speculative executionSpeculative execution

–– Hardware register renamingHardware register renaming

–– Hardware branch predictionHardware branch prediction

ll Integrated fast memory cache and interconnectIntegrated fast memory cache and interconnect
–– Integrated L1 cacheIntegrated L1 cache

–– Separate (or backside) bus for dedicated L2 cache and processorSeparate (or backside) bus for dedicated L2 cache and processor
core trafficcore traffic

The P6 microarchitecture combines the benefits of a Complex Instruction Set Computer
(CISC) with the benefits of a Reduced Instruction Set Computer (RISC).

The microarchitecture introduces several performance enhancements to IA-32 applications.
It provides the benefits of a new design without requiring old IA-32 applications to be ported
to a new architecture.

The P6 microarchitecture processors are super-scalar because they can execute more than
one instruction per cycle. They are super-pipelined because they have many more stages
than other comparable processors. The P6 microarchitecture processors support dynamic
execution through speculative and out-of-order execution.

Among the new enhancements in the P6 microarchitecture are hardware register renaming,
speculative execution, branch prediction and out-of-order execution. Hardware register
renaming allows the number of processor registers to be increased without requiring IA-32
applications to be re-written to take advantage of the additional registers. Speculative
execution means that instructions are executed before all conditions before them are known.
Branch prediction allows for a more efficient utilization of the processor pipeline. Out-of-
order execution allows instructions to be executed in any order that make sense for the
processor.

The P6 microarchitecture supports two levels of fast memory cache - the L1 and L2 cache.
The details of the microarchitecture is discussed in the following slides.
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Processor Core UnitsProcessor Core Units
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• Out-of-order Core

• In-Order Front End

• In-Order Retirement

The P6 microarchitecture is made up of in-order front end, out-of-order core and in-order
retirement units.

The front end includes Instruction Fetch, Instruction Decode, Branch Target Buffer, Micro-
instruction Sequencer, and Register Address Table units. The out-of-order core is made up
several execution units; the units include Floating Point Execution units, Integer Execution
units, and Address Generation units. The in-order retirement back end includes the Re-order
Buffer and the Register Retirement File units.

The following slides illustrate the steps that an instruction take inside a P6 microarchitecture
processor.
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Processor Pipeline StagesProcessor Pipeline Stages

RAT RS ROBwb RRFROBrdID1IFU2 ID0IFU1IFU0BTB1

BTB0

ll P6 P6 MicroarchitectureMicroarchitecture has 12 stage pipeline has 12 stage pipeline
–– 2 Branch Prediction stages2 Branch Prediction stages

–– 3 Instruction Fetch stages3 Instruction Fetch stages

–– 2 Instruction Decode stages2 Instruction Decode stages

–– 1 Register Allocation stage1 Register Allocation stage

–– 1 Re-order Buffer Read stage1 Re-order Buffer Read stage

–– 1 Reservation Station stage1 Reservation Station stage

–– 1 Re-order Buffer Write-back stage1 Re-order Buffer Write-back stage

–– 1 Register Retirement File stage1 Register Retirement File stage

The P6 microarchitecture has 12 pipeline stages that an instruction would take to complete.
Each pipeline stage is designed to prepare the instruction for a proceeding stage; the stages
are taken in sequence until an instruction is completed and its results written to a register or
memory.

The first five stages are concerned with predicting branches, and fetching instructions from
memory. The next four stages decode instructions and prepare them to be executed in
parallel and out of order by the super-scalar execution engine. One stage executes
instructions. The final two stages prepare and write values back to registers and memory.
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Purpose of Front EndPurpose of Front End
Pipeline StagesPipeline Stages

RAT RS ROBwb RRFROBrdID1IFU2 ID0IFU1IFU0BTB1

BTB0

ll Nine stages make up the in-order front endNine stages make up the in-order front end
microarchitecturemicroarchitecture

ll The front end The front end microarchitecturemicroarchitecture breaks up IA-32 breaks up IA-32
instructions into simpler operations called instructions into simpler operations called µµopsops

ll Instructions generated by the front end are fed intoInstructions generated by the front end are fed into
the reservation station and other back end stagesthe reservation station and other back end stages

Application performance tuning recommendations for the P6 microarchitecture are focused
on the first nine pipeline stages - the front end microarchitecture stages.

These nine front end stages break up IA-32 instructions generated by compilers and
assemblers into simpler micro-operations called µops. These µops are executed by the
super-scalar execution engine. Results of instruction executions are passed on to the back
end to be written back to registers or memory.

The way applications are written impact the performance of the front end microarchitecture
the most. Applications have no direct control of how the execution engine and the back end
of the microarchitecture work. For the most part, the execution engine and back end would
do the right thing given optimal performance of the front end.
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Front End PipelineFront End Pipeline
Optimization GoalOptimization Goal

RAT RS ROBwb RRFROBrdID1IFU2 ID0IFU1IFU0BTB1

BTB0

ll The optimization goal is to provide enoughThe optimization goal is to provide enough
instructions to the super scalar execution engineinstructions to the super scalar execution engine

–– Front end Front end microarchitecturemicroarchitecture is the focus of application is the focus of application
performance optimization recommendationsperformance optimization recommendations

ll Performance counters that monitor micro-Performance counters that monitor micro-
architecture events are included with many unitsarchitecture events are included with many units

–– Performance data can be collected and viewed withPerformance data can be collected and viewed with
special performance tools such as thespecial performance tools such as the VTune VTune™™
Performance Enhancement EnvironmentPerformance Enhancement Environment

–– Minimizes observation effects on applicationsMinimizes observation effects on applications

By increasing the performance of the front end microarchitecture for an application, overall
processor performance of the application is also increased.

When the throughput of the front end microarchitecture is increased, enough instructions are
available for the execution engine to keep each execution unit busy at each CPU cycle. This
in turn would likely increase the throughput of the back end: hence, overall microarchitecture
performance.

There are many performance counters included to monitor events on various P6
microarchitecture units. Some of the events can be used to monitor the performance of the
pipeline.

Because the P6 microarchitecture has an out of order execution engine, the dynamic flow of
instructions in an application is important to actual performance of the application.
Applications need to be monitored in ways that maintain the correct order of instructions.
Using tools that instrument applications (i.e. by adding instructions that collect various
performance statistics) will likely perturb the dynamic behavior of applications on the
processor. Hence, monitoring processor performance by application instrumentation is not
the most reliable way of monitoring the performance of P6 microarchitecture processors.

Circuits were added to the P6 microarchitecture to asynchronously count microarchitecture
events as they occur in the processor pipeline. This allows for collection of performance data
without disturbing the order of instructions. The microarchitecture event counters and
performance data can be viewed with minimal overhead using special performance tools
such as the VTune™ Performance Enhancement Environment.
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Pipeline Stages - BranchPipeline Stages - Branch
PredictionPrediction

RAT RS ROBwb RRFROBrdID1IFU2 ID0IFU1IFU0BTB1

BTB0

ll Two branch prediction stages:Two branch prediction stages:
–– Avoid processor pipeline stalls due to branchesAvoid processor pipeline stalls due to branches

–– Determine the likely address of the next instructionDetermine the likely address of the next instruction

ll Branch predicator maintains:Branch predicator maintains:
–– A 512 entry Branch Target Buffer (BTB)A 512 entry Branch Target Buffer (BTB)

–– A Return Stack Buffer (RSB)A Return Stack Buffer (RSB)

ll Two types of branch prediction:Two types of branch prediction:
–– Static predictionStatic prediction

–– Dynamic predictionDynamic prediction

The first two stages of the P6 microarchitecture pipeline is used to predict branches. Branch
prediction is necessary to avoid processor stalls due to branches. Pipelined processors need
to predict branches in order to keep each pipeline stage busy with instruction. Because there
are more pipeline stages in a super-pipelined microarchitecture, branch prediction is
extremely important.

 Branch prediction within a processor hardware means that the processor predicts whether
an instruction would cause the execution of an application to be transferred to a new
address (i.e. a new location other than the next linear address). The P6 microarchitecture
reserves a 512 entry Branch Target Buffer (BTB) and a Return Stack Buffer which it uses to
predict branches.

The microarchitecture supports two forms of prediction - static and dynamic branch
prediction. Both methods are very useful for predicting the behavior of branches at runtime.
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Static Branch PredictionStatic Branch Prediction

RAT RS ROBwb RRFROBrdID1IFU2 ID0IFU1IFU0BTB1

BTB0

ll Static prediction means that processor predicts theStatic prediction means that processor predicts the
likely program flow using pre-determined ruleslikely program flow using pre-determined rules

ll Static Branch Prediction rules assume that:Static Branch Prediction rules assume that:
–– Forward branches are NOT takenForward branches are NOT taken

–– Backward branches are takenBackward branches are taken

–– Unconditional jumps are takenUnconditional jumps are taken

ll Static rules work well for some branchesStatic rules work well for some branches
–– However, some branches cannot be predicted accurately atHowever, some branches cannot be predicted accurately at

compile timecompile time

Processors can predict branches based on a static set of rules. A compiler (or programmer)
can generate a sequence of instructions for an application according to what is known about
each branch at compile (or development) time. A processor could make a fairly accurate
predictions on the behavior of some branch instructions based on the sequence of
instructions generated by a compiler.

The P6 microarchitecture supports this kind of static branch prediction. The
microarchitecture performs static branch prediction using the following rules:

• Branches to addresses greater than the current Instruction Pointer(IP) are assumed (and
predicted) not taken

• Branches to addresses less than the current IP are predicted taken

• Hard jumps (i.e. unconditional branches, calls, and returns) are predicted taken

Based on these rules, a compiler can generate a sequence of instructions at compile time
that make the processor’s runtime static prediction accurate.

Even though static predictions work well for certain branches, information on how a branch
will  behave at runtime may not be available at compile (or development) time. Since some
branch instructions may be dependent on variables available only at runtime, the behavior of
some branches may be available only at runtime. Also, since some branch instructions may
depend on the outcome of previous branches, there may be a cascading behavior of
branches at runtime. Therefore, it may not be enough for a super-pipelined processor to
support only static branch prediction.
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Dynamic Branch PredictionDynamic Branch Prediction

RAT RS ROBwb RRFROBrdID1IFU2 ID0IFU1IFU0BTB1

BTB0

ll Dynamic branch prediction involves using theDynamic branch prediction involves using the
runtime behavior of each branch to predictruntime behavior of each branch to predict

ll The processors perform dynamic prediction ofThe processors perform dynamic prediction of
branches using:branches using:

–– The BTB to store the branches and their target addressesThe BTB to store the branches and their target addresses

–– A pattern based predictor to decide which direction eachA pattern based predictor to decide which direction each
encounter of a branch in a program will go during programencounter of a branch in a program will go during program
executionexecution

ll Processors get close to 100% accurate predictionProcessors get close to 100% accurate prediction

Hence, in addition to static branch prediction, the P6 microarchitecture processors perform
branch prediction based on runtime (i.e. dynamic) behavior of branch instructions.

The processors perform dynamic branch prediction using history information about branch
instructions. The processors store each branch, history and target address in a 512 entry
BTB. Using the information in the BTB, the processors dynamically predict branches and
their target addresses at runtime.

The combination of static and dynamic branch predictions results in a very accurate
prediction rate for well written applications.
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Pipeline Stages - InstructionPipeline Stages - Instruction
FetchFetch

RAT RS ROBwb RRFROBrdID1IFU2 ID0IFU1IFU0BTB1

BTB0

ll Three stages of Instruction FetchThree stages of Instruction Fetch
–– 16 byte instruction packets fetched16 byte instruction packets fetched

–– Aligned on 16-byte boundariesAligned on 16-byte boundaries

–– Instructions pre-decodedInstructions pre-decoded

–– 16 bytes packets aligned on any boundary16 bytes packets aligned on any boundary

ll Alignment of instructions in memory affectsAlignment of instructions in memory affects
efficiency of fetch stagesefficiency of fetch stages

After two stages of branch prediction, an instruction must go through three stages of
instruction fetch. During these three stages, 16 bytes of instructions are fetched, pre-
decoded and aligned for the decode stage.

The alignment of instructions in memory could have significant performance impact for the
fetch stages. Application optimization goals include alignment of instructions in memory in
ways that increase efficient utilization of all 16 bytes of instructions fetched at each cycle.
More information on alignment is provided later in this presentation.
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Pipeline Stages - InstructionPipeline Stages - Instruction
DecodeDecode

RAT RS ROBwb RRFROBrdID1IFU2 ID0IFU1IFU0BTB1

BTB0

ll Two stages of Instruction DecodeTwo stages of Instruction Decode
–– Decode and breakup IA-32 instructions into simple micro-Decode and breakup IA-32 instructions into simple micro-

operations called operations called µµopsops

ll There are three decoder units:There are three decoder units:
–– The first decoder decodes IA-32 instructions that results inThe first decoder decodes IA-32 instructions that results in

one or more one or more µµops - but less than 5 ops - but less than 5 µµops - per cycleops - per cycle

–– Two other decoders decode only 1 Two other decoders decode only 1 µµop IA-32 instructionsop IA-32 instructions

ll The decoders can have throughput of:The decoders can have throughput of:
–– up to 3 IA-32 instructions and 6 (i.e. 4-1-1) up to 3 IA-32 instructions and 6 (i.e. 4-1-1) µµops per cycleops per cycle

Instructions go through two stages of instruction decode. During these two stages, IA-32
instructions are broken up into micro-operations called µops.

The microarchitecture has three decoders that work in parallel. The first decoder decodes
complex and simple (i.e 1 µop) IA-32 instructions while the last two decoders decode only
simple instructions. The first decoder decodes instructions that generate 1 to 4 µops in one
cycle. Instructions that generate more than 4 µops take more than one cycle to decode.

The optimization goal for the decode stages is to generate a sequence of instructions that
can be decoded in parallel by the three decoders. This is usually the 4-1-1 sequence: that is
a sequence of complex followed by two simple instructions.
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Pipeline Stages - RegisterPipeline Stages - Register
AllocationAllocation

RAT RS ROBwb RRFROBrdID1IFU2 ID0IFU1IFU0BTB1

BTB0

ll One stage Register AllocationOne stage Register Allocation

ll Each processor mEach processor maintains a pool of internal physicalaintains a pool of internal physical
register filesregister files

–– Renames references to one of the original Renames references to one of the original IA-32IA-32
general purpose registers to one of the internalgeneral purpose registers to one of the internal
physical registersphysical registers

ll Register renaming removes false nameRegister renaming removes false name
dependencies for the out-of-order execution coredependencies for the out-of-order execution core

The P6 microarchitecture maintains a pool of internal registers. The number of internal
registers are much greater than the programmer visible set of 8 registers in IA-32
architecture.

After decode, instructions go through one stage of Register Allocation Table (RAT). During
the RAT stage, IA-32 register references by an instruction are renamed to references to
registers in the internal register set.

Register renaming removes false register name dependencies between instructions. By
removing false register name dependencies, the microarchitecture uncovers truly
independent instructions that it can execute in parallel. Large number of independent
instructions helps to keep the execution units busy and improves overall throughput of a P6
microarchitecture based processor.
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Register Renaming ExampleRegister Renaming Example

RAT RS ROBwb RRFROBrdID1IFU2 ID0IFU1IFU0BTB1

BTB0

……

MOVMOV EAX, ECXEAX, ECX

ADDADD EAX, 16EAX, 16

MOVMOV mem3, EAXmem3, EAX

MOVMOV EAX, 5EAX, 5

ADDADD EAX, EBXEAX, EBX

IMULIMUL EAX, 7EAX, 7

......
ll without renaming -without renaming -

requires more than 6requires more than 6
clock cycles to scheduleclock cycles to schedule

……

MOVMOV p2, p1p2, p1

ADDADD p2, 16p2, 16

MOVMOV mem3, p2mem3, p2

MOVMOV p3, 5p3, 5

ADDADD p3, p0p3, p0

IMULIMUL p3, 7p3, 7

......

ll registersregisters
renamedrenamed

2-pipe schedule2-pipe schedule

Clock0Clock0

MOVMOV p2, p1p2, p1

MOVMOV p3, 5p3, 5

Clock1Clock1

ADDADD p2, 16p2, 16

ADDADD p3, p0p3, p0

Clock2Clock2

MOVMOV mem3, p2mem3, p2

IMULIMUL p3, 7p3, 7

The following example illustrates how Register Renaming works.

The microarchitecture renames all references to EAX, EBX, and ECX to internal register
names p0, p1, p2, and p3. The names p0, p1, p2, and so on - used in the example here -
are made up; the actual names of the internal registers are not published and cannot be
accesses by the programmer or compiler.

In the above example, two instances of EAX are identified. A new internal register is
assigned each time a new instance of a register reference is seen by the processor
hardware. After the register renaming, the example shows how two instructions can be
scheduled for parallel execution at each cycle.
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Pipeline Stages - Re-orderPipeline Stages - Re-order
Buffer ReadBuffer Read

RAT RS ROBwb RRFROBrdID1IFU2 ID0IFU1IFU0BTB1

BTB0

ll One stage Re-Order Buffer ReadOne stage Re-Order Buffer Read

ll Stores all Stores all µµops waiting to be scheduled forops waiting to be scheduled for
executionexecution

–– µµops wait in the ROB until their data operandsops wait in the ROB until their data operands
and execution ports are availableand execution ports are available

ll ROB Read stage ends the in-order frontROB Read stage ends the in-order front
end end microarchitecturemicroarchitecture

After register renaming, instructions are inserted into a Re-Order Buffer(ROB) during the one
stage ROBrd. The ROBrd stage is the end of the in-order front end microarchitecture.

Instructions wait in the ROB until they can be scheduled for execution. Instruction can be
scheduled for execution only after all data dependencies are resolved and there are
execution ports where they can be scheduled.
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Reservation Station StageReservation Station Stage

ll One stage Reservation StationOne stage Reservation Station

ll Reservation Station has five execution portsReservation Station has five execution ports
–– Supports Instruction Level Parallelism (ILP) bySupports Instruction Level Parallelism (ILP) by

dispatching several dispatching several µµops concurrently toops concurrently to
appropriate execution portsappropriate execution ports

ll Goal of application optimizations:Goal of application optimizations:
–– Increase the instruction throughput of the front-endIncrease the instruction throughput of the front-end

microarchitecturemicroarchitecture stages so that the RS stage has stages so that the RS stage has
enough instructions to keep each port busyenough instructions to keep each port busy

RAT RS ROBwb RRFROBrdID1IFU2 ID0...

Port 4Port 0 ...Port 1

Instructions are executed at the Reservation Station (RS) stage - after all data dependencies
have been resolved. The Reservation Station maintains five execution ports to facilitate
instruction level parallelism (ILP); up to five instructions can start execution at a cycle.

This stage is the motivation for all the application tuning suggestions made to optimize the
throughput of the front end microarchitecture for each application. If the throughput of the
front end microarchitecture is high, there will be a mix of independent instructions in the
ROB that can be scheduled in parallel. The probability that every execution port remains
busy at every cycle is increased as large number of instructions become available for the
Reservation Station to dispatch.
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Reservation Station (Reservation Station (ContCont.).)

ll Reservation StationReservation Station  ppull ull µµops out of orderops out of order
from thefrom the ROB ROBrdrd and dispatch them to and dispatch them to
available execution ports with the appropriateavailable execution ports with the appropriate
execution unitexecution unit

–– µµops are dispatched to an execution unit only ifops are dispatched to an execution unit only if
needed data, and execution port are availableneeded data, and execution port are available

–– µµops with available data and execution unit/portops with available data and execution unit/port
bypass other instructions waiting for data or portbypass other instructions waiting for data or port

ll Some execution units are pipelinedSome execution units are pipelined

RAT RS ROBwb RRFROBrdID1IFU2 ID0...

Port 4Port 0 ...Port 1

Instructions can be scheduled out-of-order from the ROB. While an instructions is waiting for
data from memory (or previous instructions that it has dependencies with), proceeding
instructions can be scheduled for execution. Out-of-order execution maximizes the
throughput and utilization of the execution units.

Instructions are executed speculatively when all control dependencies (such as branches)
may not have been resolved. Speculative execution do not result in incorrect execution since
no changes made by an instruction execution is visible until the instruction is retired.
Mispredicted branches are detected and recovered during retirement.
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Execution PortsExecution Ports

ll PentiumPentium®®  IIII and Pentium III processors have additional units and Pentium III processors have additional units
on port 0 and port 1on port 0 and port 1

–– Pentium III processor has execution units for IntelPentium III processor has execution units for Intel®® MMX MMX™™ technology technology
and Streaming SIMD instructionsand Streaming SIMD instructions

–– Pentium Pentium IIII processor has execution units for MMX technology processor has execution units for MMX technology

RAT RS ROBwb RRFROBrdID1IFU2 ID0...

Port 4Port 0 ...Port 1

Port 0

Integer ALU

LEA, Shift

FADD, FMUL,
FDIV

Port 1

Integer ALU

Port 2

Load Unit

Port 3

Store Addr Unit

Port 4

Store Data Unit

The five execution ports have different execution units attached to them. Attached to the first
port (Port0) are integer ALU, Load Effective Address, Shift and Floating Point execution
units. Port1 has only an Integer ALU execution unit attached. Ports 2, 3 and 4 has Load,
Store Address and Store Data execution units respectively.

The latency of the execution units vary significantly. Some of the execution units take only
one cycle to complete instructions while other units take more than one cycle per instruction.
However, because some of the the high latency execution units are pipelined, instructions
can be scheduled to complete with a throughput of one instruction per CPU cycle on many
of the execution units.

The Integer ALU execution units complete instructions with a latency of one cycle and a
throughput of one instruction per cycle.  The floating point add (FADD) execution unit
completes instructions with latency of three cycles. However, FADD is pipelined; instructions
can be scheduled on the FADD unit at every cycle for a throughput of one instruction per
cycle. The floating point divide (FDIV) execution unit takes 17 CPU cycles for single
precision division and 36 cycles for double precision division. The FDIV unit is not pipelined.

The Intel Architecture Optimization Manual has the complete list of execution unit latency
and throughput.
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Pipeline Stage - Re-orderPipeline Stage - Re-order
Buffer Write-backBuffer Write-back

RAT RSROBrd RRFROBwbID1IFU2 ID0IFU1IFU0BTB1

BTB0

ll One stage Re-Order Buffer Write-backOne stage Re-Order Buffer Write-back
–– Stores all executed Stores all executed µµops waiting for in-orderops waiting for in-order

retirementretirement

Executed instructions get inserted into the ROB during the ROBwb stage. After the RS stage,
instructions stay in the ROB until all preceding instructions have been retired. The ROBwb
stage is the beginning of the in-order back end microarchitecture.
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Pipeline Stage - RegisterPipeline Stage - Register
Retirement FileRetirement File

RAT RS ROBwb RRFROBrdID1IFU2 ID0IFU1IFU0BTB1

BTB0

ll One stage Register Retirement FileOne stage Register Retirement File

ll Writes data values back to logical registersWrites data values back to logical registers
and memoryand memory

–– Retires instructions in-order (i.e. Retires instructions in-order (i.e. instructionsinstructions
retire only after all instructions before them)retire only after all instructions before them)

–– Up to 3 executed instructions retire per cycleUp to 3 executed instructions retire per cycle

–– Branches retire in first slotBranches retire in first slot

The last stage of the P6 microarchitecture pipeline is the Register Retirement File(RRF)
stage. During the RRF stage, the values produced by instructions are written back to
memory or actual IA-32 registers that were referred to before Register Renaming.

To support the ‘precise exception’ implemented by the IA-32 architecture, any exceptions
generated during instruction execution in a P6 microarchitecture processor is visible only
during the RRF stage.

Instructions retire only after all other instructions before them has been retired. Up to three
instructions are retired per cycle. Branch instructions must retire in the first of the three
retirement slots.
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MMXMMX™ ™ Technology & SSETechnology & SSE
InstructionsInstructions

For over twenty years, processor speed has been doubling every 18 months. Similar
changes have not occurred with DRAM technology. For the foreseeable future, it appears
that the gap between processor and memory speed will continue to widen. Level one and
level two caches are attempts to minimize the effects of memory on the processor by having
a relatively fast memory between main memory and the processor.
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PentiumPentium®® III Processor Register Sets III Processor Register Sets
MMX™ Technology / IA-

FP Registers
80

64
FP0 or MM0

FP7 or MM7

.

.

.

IA-INT
Registers

32
EAX

EDI

...

XMM Registers
128

XMM0

XMM3
XMM4

XMM7

.

.

.

.

.

.

ll Direct access toDirect access to
registersregisters

ll Hold scalar dataHold scalar data
onlyonly

ll Eight double precisionEight double precision
float named FP0 - FP7float named FP0 - FP7

ll Can be used as 64 bitCan be used as 64 bit
integer packed registersinteger packed registers
named MM0 - MM7named MM0 - MM7

ll Direct access to registersDirect access to registers

ll Hold data onlyHold data only

ll Eight registers referredEight registers referred
to as XMM0 - XMM7- eachto as XMM0 - XMM7- each
used to store four 32 bitused to store four 32 bit
floatsfloats

ll Direct access to registersDirect access to registers

ll Can be accessedCan be accessed
concurrently with IA-INT,concurrently with IA-INT,
and MMX / IA-FPand MMX / IA-FP

ll Hold data onlyHold data only

Starting with the Intel Pentium® III processor, new registers were added to the IA-32
Architecture to support Floating Point SIMD instructions.  The eight general purpose IA-INT
register are also available. Like the Pentium II processor, Pentium III processor also support
double precision floating point or MMX™ technology operations using the 80 bit FP
registers. MMX technology operations are achieved by using packed integer data on
registers MM0 through MM7.

MMX registers are physically overlaid on top of the FP register. Hence, the MMX register
states must be saved before FP instructions are invoked and vice versa.

XMM registers are implemented as new architectural registers. Unlike MMX operations,
there is no need to save the content of XMM registers before instructions that use IA-INT or
MMX/IA-FP registers are invoked.
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PentiumPentium®® III Processor III Processor

MMX

MMX

ROB Reservation
Station

Port 1

Port 3Port 2 Port 4

Integer

Load 
Unit

(16 entries)

Store Address 
Calculation 

Unit

(12 entries)

Store Data
 Unit

(12 entries)

Port 0

Address 
Generation

FP

Integer 

Multiply
Divide/Sqrt

Move

New Load
Instructions

New Store
Instructions

Adder
Reciprocal & Sqrt

Reciprocal
Shuffle/Move

New  FP

New FP

New execution units to support MMX technology were introduced into execution ports 0 and
1 of the P6 micro-architecture starting with Pentium® II processors. Execution units to
support the packed floating point instructions and new streaming memory operations were
also introduced into the micro-architecture starting with Pentium III processors.
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MMXMMX™™ Technology & SSE Technology & SSE
Instructions OverviewInstructions Overview

Packed Integer
Four 16-bit integers
(eight 8-bit or two 32-bit)

a0a1a2a3

b0b1b2b3

a0+b0a1+b1a2+b2a3+b3

+

64 bits

x0x1x2x3

y0y1y2y3

x0+y0x1+y1x2+y2x3+y3

+

128 bits

Packed Floating Point
Four 32-bit FP (Single Precision)

MMX™ Technology

Pentium® III Processor
New Instructions

New SIMD 
Integer Instr

Memory
Streaming
Operations

Support for packed integer and packed single precision floating point operation were
included into the P6 micro-architecture by addition of the MMX™ technology and Streaming
SIMD instructions. The streaming SIMD instructions included instructions to support single
instruction multiple data as well as streaming memory operations.
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MMXMMX™™ Technology Operations Technology Operations
ll Packed integer data type on MM0 - MM7Packed integer data type on MM0 - MM7

–– Four 16 bit, eight 8 bit, or two 32 bit packed integersFour 16 bit, eight 8 bit, or two 32 bit packed integers

ll MMXMMX™™ technology registers technology registers
–– Overlay floating point registersOverlay floating point registers

ll MMX instructionsMMX instructions
–– Operate on packed integers on MMX technologyOperate on packed integers on MMX technology

registersregisters

a0a1a2a3

b0b1b2b3

a0 op b0a1 op b1a2 op b2a3 op b3

op

Registers MM0 through MM7 supported simultaneous operations on eight 8-bit, four 16-bit,
or two 32-bit data using a single instruction. The MMX™ technology registers overlaid IA-FP
registers. Hence, the use of MMX technology registers did not require any knowledge by the
Operating System. However, application programs need to save the contents of FP registers
before using MMX instructions and vice versa.
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SIMD OperationsSIMD Operations
ll Packed floating point data typePacked floating point data type

–– 4 packed single precision floating point numbers4 packed single precision floating point numbers

–– IEEE 754 compatibleIEEE 754 compatible

ll SIMD packed instructionsSIMD packed instructions
–– Operate on the new packed data type on registersOperate on the new packed data type on registers

XMM0 through XMM7XMM0 through XMM7

ll Scalar instructionsScalar instructions
–– Operate on the least significant element of registerOperate on the least significant element of register

00

002222232330303131

3131127127 3232

X1X1X2X2X3X3X4X4

S Exponent Significand

Starting with Intel Pentium® III processor, packed floating point data types are supported by
P6 family of processors. Eight 128 bit registers named XMM0 through XMM7 are available.
Each register supports four 32 bit single precision floating point data.

For each of the four single precision element contained in an XMM register, the least
significant 23 bits store the significand , the next 8 bits store the exponent, while the most
significant bit is the sign bit. The resulting single precision numbers are compatible with
IEEE-754 specification.

There is synergy between Pentium III Processor Streaming SIMD Instructions and IA-FP
(x87) / MMX™ technology instructions. The Streaming SIMD Instructions can be scheduled
for simultaneous execution with the x87/MMX, as well as with the IA-INT instructions.
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Types of SIMD OperationsTypes of SIMD Operations

ll PackedPacked

ll ScalarScalar

op

x2 x1x4 x3

y2 y1y4 y3

op op op

x2 op y2 x1op y1x4 op y4 x3 op y3

x2 x1x4 x3

y2 y1y4 y3

op

x2 x1op y1x4 x3

Packed and scalar operations are allowed on the new packed floating point data type. As
shown, packed instructions operation on the four elements while the scalar instructions
operate on the least significant element in a packed data type.
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Memory ArchitectureMemory Architecture

For over twenty years, processor speed has been doubling every 18 months. Similar
changes have not occurred with DRAM technology. For the foreseeable future, it appears
that the gap between processor and memory speed will continue to widen. Level one and
level two caches are attempts to minimize the effects of memory on the processor by having
a relatively fast memory between main memory and the processor.
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Processor Memory HierarchyProcessor Memory Hierarchy

Processor Core

System Bus

L1 I-Cache L1 D-Cache

L2 Cache

Backside Bus

Bus Interface Unit

Registers

Memory
Controller

Memory … Cache … Registers

The following slides provides detailed information regarding cache memory within the P6
microarchitecture.

The above slide shows that the P6 microarchitecture CPU core includes a Level 1 (L1)
Instruction cache and L1 Data cache. The L1 instruction cache is single ported while the L1
data cache is dual-ported. The Bus Interface Unit (BIU) is also integrated into the processor
core.  Circuits that interface the processor to the System Bus is included in the core as well.

A unified data and instruction Level 2 (L2) cache is integrated in the same package as the
CPU core. The L2 cache is connected to the CPU core through separate bus - the L2 Cache
Bus (or Backside Bus). Most P6 microarchitecture processors have L2 Cache Bus that runs
at the same frequency as the CPU core.
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PentiumPentium®® III  III XeonXeon™™ Processor L1 Cache Processor L1 Cache

ll L1 I-cache structureL1 I-cache structure
–– 16 KB in size16 KB in size

–– 4-way set associative4-way set associative

–– Non-blocking accessesNon-blocking accesses

–– Up to 4 outstanding missesUp to 4 outstanding misses

ll L1 D-cache structureL1 D-cache structure
–– 16 KB in size16 KB in size

–– 4-way set associative4-way set associative

–– Non-blocking accessesNon-blocking accesses

–– Up to 4 outstanding missesUp to 4 outstanding misses

The sizes and configuration of the L1 caches on different P6 microarchitecture processors
vary. However, each processor is configured so that the L1 instruction cache is separate
from the L1 data cache.

The Pentium III processor has an L1 instruction cache that is a 4-way set associative 16KB
cache. The L1 data cache is also 16KB in size. Like the L1 instruction cache, the data cache
is also 4-way set associative. Both caches support non-blocking accesses and can have up
to 4 outstanding misses without stalling the processor.

The Pentium II processor has an L1 instruction cache and L1 data cache that are both 4-
way set associative and 16KB in size. Both caches support non-blocking accesses and can
have up to 4 outstanding misses without stalling the processor.
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PentiumPentium®® III  III XeonXeon™™ Processor Processor
L2 CacheL2 Cache

ll L2 cache structureL2 cache structure
–– Unified L2 cache (512 KB, 1024 KB, & 2048 KB)Unified L2 cache (512 KB, 1024 KB, & 2048 KB)

–– Connected to independent backside busConnected to independent backside bus

–– Backside bus runs at same speed as CPUBackside bus runs at same speed as CPU

–– 4-way set associative4-way set associative

–– 32 byte cache line32 byte cache line

–– Non-blocking accessesNon-blocking accesses

–– Up to 4 outstanding missesUp to 4 outstanding misses

–– Allocate-on-write policyAllocate-on-write policy

Processors based on the P6 microarchitecture all have a unified data and instruction L2
cache in the same package as the CPU. The L2 caches are all 4-way set associative
caches. However, the L2 Cache Bus speed and sizes supported by each processor vary.

The Pentium® III Xeon™ processor has an L2 Cache Bus running at the CPU core
frequency. It supports 512KB, 1024KB, or 2048KB L2 cache size configurations.

Unlike Pentium III Xeon processors, the slot 1 configuration of Pentium II processor has L2
Cache Bus that runs at half the CPU core frequency. The Pentium II processor supports
only 256KB and 512KB cache size configurations.
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Memory Access LatencyMemory Access Latency
ll PentiumPentium®® III processor example III processor example

–– L1 cache hitL1 cache hit 3 CPU cycles3 CPU cycles

–– L2 cache hitL2 cache hit 20 CPU cycles20 CPU cycles

–– SDRAM accessSDRAM access 11 - 18 System Bus cycles11 - 18 System Bus cycles

ll Hence, memory access is expensiveHence, memory access is expensive
–– SDRAM access time is 66 to 108 CPU cycles for aSDRAM access time is 66 to 108 CPU cycles for a

system with 100MHz bus and 600 MHz processorssystem with 100MHz bus and 600 MHz processors

ll Pentium III processor provides memoryPentium III processor provides memory
control instructions for applicationscontrol instructions for applications

–– Application can use instructions to improveApplication can use instructions to improve
effective memory latencyeffective memory latency

Memory continues to be a performance bottleneck as processor speed increases. This slide
shows typical timings for access to two levels of cache and SDRAM on Pentium® III
processors.

The data clearly point out that memory latency can have a big impact for an application
performance. To alleviate these performance bottlenecks, Pentium III processors included
new memory streaming instructions to allow applications to better schedule memory access.
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PentiumPentium®® III Cache Control III Cache Control
Instructions - StoreInstructions - Store

ll Streaming store instructions: MOVNTQ andStreaming store instructions: MOVNTQ and
MOVNTPSMOVNTPS

–– Moves 64 bits and 128 bits respectively fromMoves 64 bits and 128 bits respectively from
source registers directly to memorysource registers directly to memory

–– Minimizes cache pollution during storesMinimizes cache pollution during stores

PCI BusPCI Bus

System Bus

RAM
Memory

Chipset Host
Bridge

AGP
Graphics
Controller

CPU

registers

L1

L2
CPU

The first set of instructions controls how stores are performed by applications. With
MOVNTQ and MOVNTPS instructions, applications can now store directly from registers to
memory without polluting processor’s first level or second level caches. The MOVNTQ
instruction stores from 64 bits from an MMX™ technology register to memory while
MOVNTPS instruction stores 128 bits from an XMM register to memory bypassing cache
when the data is not already in a cache.
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PentiumPentium®® III Cache Control III Cache Control
Instructions - LoadInstructions - Load

ll Pre-fetch instructionsPre-fetch instructions
–– Available for applications to provide hints to processorAvailable for applications to provide hints to processor

on which data will be needed soonon which data will be needed soon
⇒⇒Does not cause exceptionsDoes not cause exceptions

–– Processor would attempt to get the specified data to theProcessor would attempt to get the specified data to the
right cache levelright cache level

–– Minimize effect of long latency memory operations andMinimize effect of long latency memory operations and
minimize cache pollution during loadsminimize cache pollution during loads

ll PREFETCH0, PREFETCH1, PREFETCH2, andPREFETCH0, PREFETCH1, PREFETCH2, and
PREFETCHNTA instructions providedPREFETCHNTA instructions provided

–– Each fetches a cache line containing the specified byteEach fetches a cache line containing the specified byte
address to a cache slot (PREFETCHNTA will bypass L2)address to a cache slot (PREFETCHNTA will bypass L2)

The second set of instructions allow applications to pre-fetch data into a cache line before an
instruction needs the data. This will minimize or eliminate the memory latency for an
application.

There are several pre-fetch instructions to allow an application to provide hint to the
processor to pre-load a cache line containing a specified byte into the right cache level.
PREFETCH0 will provide hint to the processor to pre-load data into both L1 and L2 caches.
PREFETCH1 will load only into L2. PREFETCH2 currently work the same as PREFETCH1
but is intended to be a hint for far instructions. PREFETCHNTA instruction will load data to
L1 cache but not L2. By loading data into the right cache level, memory latency is reduced
while cache pollution is avoided.
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Common ProgrammingCommon Programming
PitfallsPitfalls

The next set of slides summarizes the most common programming pitfalls for applications
running on a P6 microarchitecture processor. Each pitfall is described in detail; solutions are
also offered.
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Summary of Common PitfallsSummary of Common Pitfalls
ll During micro-architecture tuning of a system, manyDuring micro-architecture tuning of a system, many

opportunities may exist for increasing applicationopportunities may exist for increasing application
performance by increasing processor efficiencyperformance by increasing processor efficiency

ll The opportunities fall into several categoriesThe opportunities fall into several categories
–– Large number of branch Large number of branch mispredictionsmispredictions

–– Memory misalignmentsMemory misalignments

–– Poor memory organizationPoor memory organization

–– Poor spatial and temporal data localityPoor spatial and temporal data locality

–– Poor instruction localityPoor instruction locality

–– Inefficient instruction schedulingInefficient instruction scheduling

–– Lack of code parallelismLack of code parallelism

ll This section provides guidance for troubleshootingThis section provides guidance for troubleshooting
and resolving these problemsand resolving these problems

The above list summarizes some of the ways that an application performance on a P6
microarchitecture processor can be hindered. Application developers can use this list to
systematically investigate how to optimize the processor performance for an application.

Many of the items in this list have corresponding events that are kept track of by the
microarchitecture; some can be deduced from several other microarchitecture events.

The most common application issues include:

• Branch mispredictions which can occur if branches are written poorly

• Misaligned Memory References which occur when instructions and data are incorrectly
organized in memory

• Decode stalls which can occur when the three available decoders are not fully utilized

• L2 Cache misses which can occur because of poor design of an application

• Poor execution throughput which can occur when the throughput of the front end
microarchitecture is poor or when a lot of instructions need to use the same execution
port (e.g. series of FDIV operations)

 There are also other issues such as path-length (i.e. too many instructions executed per
transaction) which may be detected at the microarchitecture tuning level but fixed at the
system and application tuning levels.
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Effect of Common PitfallsEffect of Common Pitfalls
ll Branches Branches mispredictionsmispredictions

–– Waste CPU cycles (for execution and for recovery)Waste CPU cycles (for execution and for recovery)

ll MisalignedMisaligned memory references memory references
–– Take extra CPU cycles than aligned accessesTake extra CPU cycles than aligned accesses

ll Poor memory organizationPoor memory organization
–– Cause cache misses, page faults or execution serializationCause cache misses, page faults or execution serialization

ll Poorly data or instruction localityPoorly data or instruction locality
–– Cause many cache misses, poor fetch buffer utilizationCause many cache misses, poor fetch buffer utilization

and large working set sizeand large working set size

ll Poorly scheduled instructionsPoorly scheduled instructions
–– Under utilizes decoders and serializes executionUnder utilizes decoders and serializes execution

ll Lack of code parallelismLack of code parallelism
–– Reduces effectiveness of the processor’s execution portsReduces effectiveness of the processor’s execution ports

The above list summarizes some of the ways that an application performance on a P6
microarchitecture processor can be hindered. Application developers can use this list to
systematically investigate how to optimize the processor performance for an application.

Many of the items in this list have corresponding events that are kept track of by the
microarchitecture; some can be deduced from several other microarchitecture events.

The most common application issues include:

• Branch mispredictions which can occur if branches are written poorly

• Misaligned Memory References which occur when instructions and data are incorrectly
organized in memory

• Decode stalls which can occur when the three available decoders are not fully utilized

• L2 Cache misses which can occur because of poor design of an application

• Poor execution throughput which can occur when the throughput of the front end
microarchitecture is poor or when a lot of instructions need to use the same execution
port (e.g. series of FDIV operations)

 There are also other issues such as path-length (i.e. too many instructions executed per
transaction) which may be detected at the microarchitecture tuning level but fixed at the
system and application tuning levels.
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MicroarchitectureMicroarchitecture Tuning Tuning
RecommendationsRecommendations

Each pitfall and solutions are described in the next set of slides.

This section begins with a description of a generic methodology for resolving problems with
the performance of applications at the microarchitecture level. Then, each application pitfall
is described in details; solutions to the pitfalls are provided after each pitfall.
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Get the Big PictureGet the Big Picture

ll Identify the most costly Identify the most costly microarchitecturemicroarchitecture events for events for
the target applicationthe target application

–– The The VTuneVTune™ Performance Enhancement Environment is an™ Performance Enhancement Environment is an
excellent tool for profiling systems to determine contributions ofexcellent tool for profiling systems to determine contributions of
various various microarchitecturemicroarchitecture events for an application events for an application

ll Identify routines with large occurrences of identifiedIdentify routines with large occurrences of identified
costly costly microarchitecturemicroarchitecture events events

–– VTuneVTune analyzer is an excellent tool for identifying the contribution analyzer is an excellent tool for identifying the contribution
of each program (or of each program (or dlldll) line, function, and source file to) line, function, and source file to
microarchitecturemicroarchitecture events on a system events on a system

–– VTuneVTune analyzer can also approximate the number of instructions analyzer can also approximate the number of instructions
executed by different functions of an applicationexecuted by different functions of an application

ll Do the appropriate things to fix problems identifiedDo the appropriate things to fix problems identified

The following outline describes the steps that should be taken to identify and resolve
microarchitecture performance issues for an application.

It is necessary to go after the biggest opportunity for performance improvement. Amdahl’s
Law can be applied to select which processor events are the most costly events for an
application.

At the start, use Vtune™ analyzer to summarize the cost of each event in the list of
microarchitecture events mentioned earlier in this presentation. Using the Vtune analyzer
summary costs of the events, choose the most costly events to optimize first; optimize the
rest as time permits.

After identifying a costly event, use VTune analyzer to identify the application location with
the largest occurrence for the identified event. Using the Intel® Architecture Optimization
Manual and this presentation as guides, improve those portions of the application to
eliminate the occurrences of the costly event. Follow the ASC process.



P6 Microarchitecture Tuning Guide

Notes

Page 44

Slide 44®® Copyright © 1998,1999, Intel Corporation. All rights reserved

Tuning for Branch PredictabilityTuning for Branch Predictability

ll Branch misses cost between 10 and 15 CPU cyclesBranch misses cost between 10 and 15 CPU cycles
–– Sometimes can cost as much as 26 cyclesSometimes can cost as much as 26 cycles

ll To resolve branch miss problems:To resolve branch miss problems:
–– Minimize number of branchesMinimize number of branches

⇒⇒do more instructions inside each branchdo more instructions inside each branch

⇒⇒unroll short action loopsunroll short action loops

–– Match CALL and RETURN pairsMatch CALL and RETURN pairs

–– Put most likely taken path of “if-else” statement inside “if”Put most likely taken path of “if-else” statement inside “if”

–– Pull most likely case of a biased “switch” into an “if”Pull most likely case of a biased “switch” into an “if”
statement - with the rest of the “switch” inside an “else” partstatement - with the rest of the “switch” inside an “else” part

–– Optimize code using profile-guided compiler optimizationOptimize code using profile-guided compiler optimization

–– Choose aggressive compiler processor optimization optionsChoose aggressive compiler processor optimization options

Instructions speculatively executed must be flushed from the processor pipeline after each
branch misprediction is detected. This can result in a lot of wasted CPU cycles as new
instructions need to be fetched into the pipeline. On the P6 microarchitecture, branch
mispredictions cost about 10 to 15 CPU cycles; it can be as much as 26 cycles sometimes.

Branch misspredictions can easily be the most costly event for an application. Many large
server and workstation applications have a lot of active branches. Some applications
generate an average of one branch instruction for every 3 instructions. Therefore, there is a
high probability that some poorly written branches can easily cause visible performance
problems - as the mispredicted branches are restarted in the pipeline.

To minimize the probability of branches misprediction, it is necessary to reduce the number
of branches in a program by doing more instruction inside each loop and unrolling short
action loops. It is also important to write branches so that the static branch prediction rule is
correct most of the time.

Most loop naturally work well under the static branch prediction rule. However, ‘if-else’ and
‘switch’ statements do not work well. However, a programmer can improve the performance
of an ‘if-else’ statement by putting the most likely case of the statement inside the ‘if’ portion
of the statement. The performance of ‘switch’ statements can be improved by pulling the
most likely case of a highly biased (i.e. >90% of the time one case is taken) inside an ‘if’
statement.

It is also important to use a P6 microarchitecture aware compiler so that the compiler can
generate the right branch code for optimal performance of the application.
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Tuning BranchesTuning Branches
ll Use PentiumUse Pentium®® III Streaming SIMD instructions III Streaming SIMD instructions

to do multi-way data dependent branchesto do multi-way data dependent branches
For example, use:For example, use:
MOVMSKPS MOVMSKPS eaxeax, xmm1, xmm1
ll First, compare and generate maskFirst, compare and generate mask

CMP (EQ, LT, LE, NEQ, NLT, NLE )CMP (EQ, LT, LE, NEQ, NLT, NLE )
ll Then, transfer mask to integer registerThen, transfer mask to integer register

MOVMSKPS  MOVMSKPS  eaxeax,  xmm1,  xmm1

0000…00 1111…111111…11 0000…00

00..1001

xmm1

eax
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Tuning for Code and DataTuning for Code and Data
AlignmentsAlignments

ll Poor data and code alignment results in low cache hitPoor data and code alignment results in low cache hit
rate and poor utilization of fetch unitsrate and poor utilization of fetch units

ll As with Intel486As with Intel486TMTM Processor, both CODE and DATA Processor, both CODE and DATA
alignment effects performancealignment effects performance

–– Align DATA: Align DATA: 16-bit variables on even boundaries16-bit variables on even boundaries
––   32-bit variables on 4 byte boundaries32-bit variables on 4 byte boundaries
––   64-bit variables on 8 byte boundaries64-bit variables on 8 byte boundaries
––   80-bit variables on 16 byte boundaries80-bit variables on 16 byte boundaries
––   
–– Align CODE: Align CODE: Major Code blocks, Interrupt Service RoutinesMajor Code blocks, Interrupt Service Routines

  aligned as per the Intel486aligned as per the Intel486
                                              Processor (16 byte boundaries)                                              Processor (16 byte boundaries)

The alignment of code and data in memory will also impact the processor performance of
applications. Misaligned data and code take extra CPU cycles to fetch. Therefore, it is critical
to have code and data elements aligned on their natural boundaries in memory. For
example, 16-bit data should be aligned on even byte boundaries while 32-bit data should be
aligned on 4-byte boundaries.

Since the Instruction Fetch Unit fetches 16 bytes of data at a time, code blocks - especially
heavily accessed code such as loops and Interrupt Service Routines - should start at 16 byte
boundaries.
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16 Byte Alignment16 Byte Alignment
(Intel C/C++ Compiler Only)(Intel C/C++ Compiler Only)
ll 16 byte alignment is required for16 byte alignment is required for

some SSE Instructionssome SSE Instructions

ll ____declspecdeclspec(align(16))(align(16))
––Use to align instantiation of structureUse to align instantiation of structure

––Can’t use for structure membersCan’t use for structure members

ll __m128__m128
––Use with structure membersUse with structure members

––Use like any other data typeUse like any other data type
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General Data AlignmentGeneral Data Alignment
ll Do not pack itemsDo not pack items

–– Avoid compiler options that force cache lineAvoid compiler options that force cache line
packing (not the same as Pentiumpacking (not the same as Pentium®® III processor III processor
pack instruction)pack instruction)

⇒⇒However, arrange structures in decreasing size orderHowever, arrange structures in decreasing size order
(i.e. largest first) to get the benefit of compiler packing(i.e. largest first) to get the benefit of compiler packing

ll Write structures to account for the way theyWrite structures to account for the way they
are accessed at runtimeare accessed at runtime

–– Transform loops to increase locality of referenceTransform loops to increase locality of reference

ll Avoid cache line splitsAvoid cache line splits

Application developers should pay special attention to the ordering of elements and
structures in memory to avoid misaligned memory references.

To get good alignment of structures, the compiler ‘pack’ option should not be used during
compilation. There are tricks that allow structures to take the least amount of memory as
well as be properly aligned. By declaring the order of elements in a structure from the largest
to the smallest, good alignment as well as packing can be achieved.

Also, structures should be written to increase spatial locality as well as referential locality at
runtime. Structure elements that are referenced together should appear physically together
in memory and vice versa.

It is also important to have structures appear in the minimum number of cache lines. Avoid
having structures split between cache lines as accesses to these structures could potentially
result in several cache misses.
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Tuning to Increase Number ofTuning to Increase Number of
Decoded InstructionsDecoded Instructions

ll In C or C++, improve instruction schedulingIn C or C++, improve instruction scheduling
as follows:as follows:

–– Use P6 micro-architecture aware compilersUse P6 micro-architecture aware compilers

–– Choose advanced Intel processor compilerChoose advanced Intel processor compiler
optimization flags during application compilationoptimization flags during application compilation

ll In Assembly:In Assembly:
–– Write code that can be scheduled in a 4-1-1Write code that can be scheduled in a 4-1-1

sequencesequence

–– Avoid sequences of Floating Point divisionsAvoid sequences of Floating Point divisions
⇒⇒Floating point division execution units not pipelinedFloating point division execution units not pipelined

The configuration of three decoders in the P6 microarchitecture requires that the scheduling
order of instructions is important.

For optimal performance of applications on the P6 microarchitecture, compilers and
assemblers need to generate codes that appear in a 4-1-1 sequence. P6 microarchitecture
aware compilers such as MS Visual Studio* 5.0 or later and Intel® Proton Compiler generate
the right code sequence; older version of Microsoft compilers do not generate the right
sequence.

The 4-1-1 sequence will result in good utilization of all available decoders. This, in turn, will
help the throughput and performance of the front end microarchitecture.
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Instruction SchedulingInstruction Scheduling
ll Out-of-Order execution units in P6 micro-Out-of-Order execution units in P6 micro-

architecture eases instruction scheduling painarchitecture eases instruction scheduling pain
–– However, must use P6 micro-architecture awareHowever, must use P6 micro-architecture aware

compilerscompilers

ll Use appropriate implementation of applicationUse appropriate implementation of application
instructionsinstructions
––  C++ classes (for low to medium criticality) C++ classes (for low to medium criticality)

––  Intrinsics Intrinsics (for medium to high criticality) (for medium to high criticality)

––  Assembly (for high criticality) Assembly (for high criticality)

ll Unroll short action loopsUnroll short action loops
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Manual Instruction SchedulingManual Instruction Scheduling
ll   Draw the data flow treeDraw the data flow tree

–– Indicates inherent parallelism and shows data dependenciesIndicates inherent parallelism and shows data dependencies

–– Gives a quick approximation to number of instructions andGives a quick approximation to number of instructions and
clocks neededclocks needed

ll Schedule instructions to balance utilization ofSchedule instructions to balance utilization of
hardware resourceshardware resources
–– Traverse the tree horizontally to minimize data dependenciesTraverse the tree horizontally to minimize data dependencies

–– Minimize ROB starvation and/or saturationMinimize ROB starvation and/or saturation
⇒⇒Long latency instructions could cause those that follow to fill upLong latency instructions could cause those that follow to fill up

the ROB (instructions retire in-order)the ROB (instructions retire in-order)

⇒⇒Too many instructions waiting for operands can fill the ROBToo many instructions waiting for operands can fill the ROB

ll Schedule instructions to balance utilization ofSchedule instructions to balance utilization of
hardware resourceshardware resources
–– Schedule a complex instruction followed by two simple onesSchedule a complex instruction followed by two simple ones
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Tuning for L2 Cache MissesTuning for L2 Cache Misses
ll To reduce L2 cache misses:To reduce L2 cache misses:

–– Use the largest L2 cache size available for theUse the largest L2 cache size available for the
IA-32 processor (e.g. use PentiumIA-32 processor (e.g. use Pentium®® III  III XeonXeon™™ processor processor
with 2MB L2 cache instead of 1MB L2 cache)with 2MB L2 cache instead of 1MB L2 cache)

ll Beware of cache invalidate implications ofBeware of cache invalidate implications of
your application designyour application design

–– Avoid false sharingAvoid false sharing

–– Place data used by a single thread contiguously inPlace data used by a single thread contiguously in
memorymemory

–– Don’t let many locks or many other high contentionDon’t let many locks or many other high contention
data fall on the same 32 byte cache linedata fall on the same 32 byte cache line

ll Pre-fetch instructions and data before they arePre-fetch instructions and data before they are
neededneeded

The Level 1 (L1) and Level 2 (L2) caches are used to minimize the impact of latency gap
between accesses to CPU registers and accesses to main memory. As the gap between
memory and CPU latencies widens, the importance of cache increases. As CPU frequencies
increase, it is necessary that the most frequently used data and instructions are available in
the fast (i.e. cache) memory. The likelihood of CPU pipeline stalls due memory requests
missing the cache decreases with decreases in cache miss rate.

L2 cache miss rate indicates the ratio of all memory requests that were not satisfied by the
L1 or the L2 cache. The organization of data and instructions in memory affects the L2
cache miss rate. Therefore, application developers should design code and data structures
so that cache miss rates are minimized.

To minimize the L2 cache miss rate for an application that requires a lot of cache, use the
IA-32 Architecture processor with the largest cache size configuration. Within an application,
the organization of structures will impact the total number of cache misses. By implementing
structures so that cache splits are avoided, programmers can also affect the overall cache
miss rate for an application.

On SMP environment, cache misses may also occur on a processor when the cache line
needed by the processor has been modified on the L2 cache of another processor. During
these situations, cache line invalidate is initiated so that the processor with modified data
can write the cache line back to memory so that the data is available to other processors. To
avoid a lot cache line invalidates, data structures should be written so that false sharing of
cache lines between processors executing different threads are avoided.
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Some Pre-fetching RulesSome Pre-fetching Rules
llRule 1: Don’t schedule too lateRule 1: Don’t schedule too late

–– Make sure data is in the cache when neededMake sure data is in the cache when needed

–– Function of loop size & number ofFunction of loop size & number of prefetches prefetches
⇒⇒Small, memory-bound loops may not benefitSmall, memory-bound loops may not benefit

substantiallysubstantially

llRule 2: Minimize the numberRule 2: Minimize the number
–– Not free (ROB, LB, Bus Transactions)Not free (ROB, LB, Bus Transactions)

–– Make each one count (as much as possible)Make each one count (as much as possible)
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SomeSome Prefetching Prefetching Rules ( Rules (ContCont.).)

llRule 3: IntersperseRule 3: Intersperse prefetch prefetch with with
computational instructionscomputational instructions
–– Don’t lump all together or with too many loadsDon’t lump all together or with too many loads

–– Clogging the load port can stall processorClogging the load port can stall processor

llRule 4:  Adjust your stridesRule 4:  Adjust your strides
–– +32, +48, +64 all “reach further out” to get data for+32, +48, +64 all “reach further out” to get data for

subsequent iterationssubsequent iterations



P6 Microarchitecture Tuning Guide

Notes

Page 55

Slide 55®® Copyright © 1998,1999, Intel Corporation. All rights reserved

WhenWhen Prefetch Prefetch Works Best Works Best

Compute Bound Loop

Memory Bound Loop

Execution

Prefetch
i

i+1

i+2

i+3

i

i+1

i+2

i+3

Stall on load

Small, tight loops will
see some benefit from
prefetch (because it’s
advancing the load), but
it likely won’t be
substantial.
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ConclusionsConclusions

llUnderstand IA-32 processor andUnderstand IA-32 processor and
platform architectureplatform architecture

llGet the big pictureGet the big picture

llUse the right toolsUse the right tools

llWrite applications in ways thatWrite applications in ways that
minimize inefficiencies and takeminimize inefficiencies and take
advantage of the processor capabilityadvantage of the processor capability

This presentation described the P6 microarchitecture and how to take advantage of its
feature for optimal application performance. A general approach for using the build-in
processor event counters to understand performance bottlenecks within the processor
pipeline was also reviewed. The presentation concluded with a detailed description of the
most common application programming pitfalls and how to eliminates them for optimal
performance of applications.
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Questions???Questions???
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Backup SlidesBackup Slides
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Comparing L2 Cache SizesComparing L2 Cache Sizes
ll Don’t compare Don’t compare IA-32IA-32 processor cache size with processor cache size with

cache sizes of proprietary RISC processorscache sizes of proprietary RISC processors

ll RISC processors are typically based on fixed sizeRISC processors are typically based on fixed size
instruction set (ISA)instruction set (ISA)

–– Fixed size ISA processors have poor code densityFixed size ISA processors have poor code density

ll RISC processors also require 3 instructions forRISC processors also require 3 instructions for
every CISC instruction on averageevery CISC instruction on average

–– Thus, RISC processors have more code cache requirementThus, RISC processors have more code cache requirement

⇒⇒some RISC processors need 4 to 15 times larger cachesome RISC processors need 4 to 15 times larger cache
size for similar performance as size for similar performance as IA-32IA-32 processors for processors for
some applicationssome applications

⇒⇒some RISC processors also need 2 to 5 times highersome RISC processors also need 2 to 5 times higher
CPU frequency for comparable IA-32 processorCPU frequency for comparable IA-32 processor
performanceperformance


