
Presenting CS Concepts through Multiple
Representations to Engage African-American

Elementary School Children
Olivia M. Nche

School of Computing
Clemson University
Clemson, SC, USA

oncheey@g.clemson.edu

Elizabeth Colbert-Busch
Business Development

Clemson University
Clemson, SC, USA
ebusch@clemson.edu

Murali Sitaraman
School of Computing
Clemson University
Clemson, SC, USA

MSITARA@clemson.edu

Victor B. Zordan
School of Computing
Clemson University
Clemson, SC, USA
vbz@clemson.edu

Abstract— This experience report presents elements of
an outreach program to elementary school children to
broaden participation in computing. The program is based
on a unique multi-faceted curriculum that facilitates the
presentation of abstract computer science (CS) concepts
within a summer camp setting. The curriculum exposes
the same abstract content to children using different
representations and helps them to learn and practice
the concepts using a “hands-on” approach. Further, use
of multiple representations supports the learning needs
of diverse learners, considering the grades and ages of
the participants. Specifically, we present CS concepts to
students in three formats: 1) using motivated real-world
and everyday examples, 2) elementary graphical program-
ming, and 3) a custom video game designed to test and
exercise concepts in a fun environment. Pretest/posttest
analysis show promising trends, including positive changes
in attitudes and learning of computational thinking and
coding concepts.

Keywords— broadening participation, integrative ap-
proach, computational thinking, problem solving

I. INTRODUCTION

Research on learning with representations has shown that
multiple representations can provide unique benefits when
learning complex new ideas and that learners can enhance
their performance if they interact with an appropriate repre-
sentation [1]. Multiple representations can offer opportunities
for repetition which can help to reinforce concepts. Further,
multiple representations can also accommodate different learn-
ing styles and reach a broader set of learners. This paper
describes how the idea of multiple format representations can
be employed in the development of a curriculum for teaching
CS concepts within the context of a summer camp. The
curriculum is designed to give students ample opportunities
to learn abstract concepts.

A lack of interest or proficiency in CS subjects among
students is a prevalent problem in many school districts,

yet early intervention can help to improve students’ self-
efficacy and increase motivation. This deficiency is more
predominant among minorities, including African American
and Latino students, who are often largely underrepresented
in computing [2], [3], [4]. Hence, it is becoming increasingly
critical to research and experiment with effective methods
of engaging students of all ages, especially minorities and
traditionally excluded groups [3]. The target students for our
experiment are all African Americans and are amongst the
least likely to have access to and benefit from CS without
intervention. Considering the ages of our population and the
notion that CS concepts tend to be abstract, we employed a
novel multi-faceted approach which borrows from the princi-
ples of multiple representations. The curriculum also aims to
highlight the benefits of learning CS concepts to the students
so that they can see how computing can impact their lives.
So in part to achieve this goal, the curriculum proposed also
incorporates a “STEM talk” element, which exposes students
to STEM career possibilities.

The rest of the paper is organized into the following
sections: Section 2 discusses related work. Section 3 describes
the experimental set up. Section 4 details the curriculum
and methodology. Section 5 contains results of qualitative
and quantitative assessments, and analysis. Sections 6 and 7
contain a discussion and a conclusion respectively.

II. RELATED WORKS

In the experiment of Ainsworth, pre-algebra students
learned about functions using a curriculum that presented
the information in multiple formats [1]. The transition from
arithmetic to algebra is especially difficult for some students
probably because the concept of functions, which is a central
topic in pre-algebra mathematics, is typically presented in an
abstract format rather than in a concrete context. Post-test
results from this research indicate that students who were
taught using multiple formats performed better at solving word
function problems than their counterparts who did not receive
this treatment.



Geometry is also another topic that is difficult for students to
grasp due in part to the abstract method of presentation. Wong
et al. used a computer-assisted learning environment called Mr.
Geo with the help of multiple representations, to aid students
learn theorem proving [5]. The representations used included
a problem description, a static figure, a dynamic geometry
figure, a formal proof and a proof tree. Their empirical results
indicated that students found this method helpful in learning
geometry proofs. Multiple representation of concepts in this
case was more than the context of the instruction—a gaming
environment, a lecture environment, and a problem-based
environment. It also included mathematical approaches to
representing the same relationship in different ways. However,
the emphasis here is the fact that multiple representations can
help students learn difficult concepts. The above-mentioned
works are all math related and multiple representations have
been widely used in math. The curriculum for this explo-
ration employs multiple representations for computer science
concepts building the hypothesis that, like math concepts,
computer science tends to be abstract in nature and so the
approach may transfer. This work is therefore similar to the
mentioned works in that it also attempts to impute knowledge
of difficult and abstract concepts to students by presenting it
in multiple formats.

With respect to the difficulty associated with novice pro-
gramming, some studies suggest that students who complete
introductory programming courses are not as competent at de-
veloping computer programs to solve straightforward problems
as might be expected. Prior work indicates that students may
lack an understanding of fundamental programming concepts
and that learning to program is difficult for many students [1],
[6], [7]. As a result, CS educators have tried a variety of
instructional methods to assist beginning programmers [7].
Furthermore, results from other studies to discover why some
students have difficulty learning to program point towards the
fundamentals of programming [8]. From the findings of these
studies, we can conclude that experimenting with teaching
methods that encourage attention to fundamental concepts
of computing might help alleviate some of the problems
encountered by novice programmers. This outreach therefore
focuses on CS concepts that are applicable to all programming
languages without burdening the students with learning the
syntax of any particular language. To this end, we use a pseudo
code in our lectures and video game [9], complemented by
visual programming on SNAP [10].

III. EXPERIMENTAL DESIGN

The subjects of the present project are amongst those
who are largely excluded when it comes to opportunities to
acquire knowledge in computer science. So our intervention
served as an opportunity to expose them to CS concepts in
particular and include them in the quest for computing knowl-
edge in general. The students were enrolled in the Metanoia
community-centered summer program (Freedom School). The
school provided us with the opportunity to recruit participants
while our project served as part of the enrichment activities for

the students. Buses were available to bring the students to a
nearby facility with a custon computer classroom, conveniently
located less than 10 minutes away from the Metanoia Freedom
School. The facility serves as the Clemson University campus
in Charleston and this is where our summer camp took place.
There were a total of 40 students when the camp started and 30
students when it ended (14 boys and 16 girls). All the students
were African American. There were two cohorts of students.
The first cohort comprised of students from the third and fourth
grades, while the second cohort included students from the
third and fifth grades. The camp for each cohort involved
meeting twice a week for four hours. The students took a
pretest, a pre-survey, a posttest and a post survey [11]. Some
questions tested computational thinking and were designed
in the form of Bebras’ challenge style questions [12]. Other
questions were similar to code snippets used in the lectures
as seen in Fig 1 and 2). The pretest and the posttest were
designed to assess if our intervention helped the students learn
CS concepts and positively influence their attitude towards
computing. The posttest was very similar to the pretest. We
maintained the same questions in the posttest but changed the
numbers and names involved. This was done to discourage
memorization of answers although the chances were slim,
considering that this was a five-week summer camp. The tools
we used for the experiment include SNAP and the Unity 3D
gaming engine. SNAP is a blocks-based programming tool
from University of California, Berkeley, which is an extension
of Scratch [10]. Unity 3D is a gaming engine that allows users
to create virtual applications.

IV. CURRICULUM AND METHODOLOGY

In this project, basic computing concepts—sequencing,
variables assignments, operators (arithmetic and relational),
conditionals, iteration—are introduced beginning with day-
to-day examples with which students are familiar and can
grasp. These are later reinforced through multiple graduated
exposures. Following this methodology, we prepared a stack
series of modules that are each designed to offer the students
motivation, by way of a provocative STEM-talk introduction,
followed by multiple exposures to a single focal CS concept. In
the end, we opted for a two-day module length due to practical
logistics. The students were prepped at the beginning of each
module, by listening to the motivational career-oriented STEM
talk. In this talk we emphasized the connection between
excellence in STEM and a great career in the future. This
was intended to make students aware that they had great
opportunities before them if they focused on STEM and
coding. We brought in expert guest speakers from various
fields to deliver the talks. The speakers typically talked about
the path to their current career, what they do in their jobs and
specifically how they use computers to do their jobs. In every
discussion, we ensured that a parallel was drawn between what
the students were learning in the camp, and the different career
options they were exposed to.

This was closely followed by content exposure of a specific
CS concept in a traditional lecture style. Then we extrapolated



this concept to SNAP to showcase how it is explored in a
visual block-based programming interface and then categor-
ically merged the two together. This segment was followed
by a game session in which the students got to explore the
same content in a video game [9]. Another interesting feature
which we incorporated into the curriculum was a STEM
activity segment. During this session, the students interacted
with various small robots which are programmable through a
simple graphical user interface. This further emphasized the
same CS concept that was being explored in SNAP. Finally,
the students finished each module with a creative period that
let them explore the new concept (with previous ones) to make
designated programs.

In its construction, the module is designed to provide: 1)
scaffolding within and across modules with repetitive cu-
mulative concept reprises; 2) multiple and varied exposures
of each CS concept; and 3) frequent opportunities for free
experimentation. Considering the poor reading skills of some
of the students, we added a short reading period to help the
students who needed to improve their reading skills. During
this time, the students watched an excerpt of a movie and
then took turns reading the corresponding script out loud. The
summer camp lasted five weeks. The first and last weeks were
spent on introduction and conclusion. The introductory week
was dedicated to administering a pretest and pre-survey. It was
also used to introduce SNAP, and general concepts about com-
puters, including key terms such as “algorithm”, “program”,
“programming languages” and so on. In this phase, we used
“making a peanut butter and jelly sandwich” as an example to
emphasize the importance of precision in commands, sequence
and order in executing computer programs.

The middle three weeks were devoted to three modules,
each focusing on different concepts. During the concluding
week, the students took post assessment tests, created their
final projects, and participated in a graduation ceremony. The
ordering of computing concepts roughly follows the learn-
ing trajectory for school children detailed and adapted from
the Beauty and Joy of Computing course developed at the
University of California, Berkeley [10]. Inspired also by the
work of Rich, et al. [13] in formulating learning trajectories
for students from K-8 grades, we created a taxonomy of
concepts that influenced the order in which our curriculum
was executed.

A. Module 1: Focus on Variables, Assignments, Operators

In this module, the first 35-minute block was dedicated to
an interactive talk, which allowed the students to peek into
programming using the terminal and webpage designing. After
the break, we introduced the concept of assignments, operators
and variables to the students using everyday examples like
a piggy bank, which is a single holder that can contain a
variable amount of money. This portion constituted the first
presentation in this module (Fig. 1). In the second presentation,
we explored these concepts in SNAP. We initially focused on
creating, naming and using variables by dragging and dropping
relevant blocks on to the script area. We then used several

Fig. 1. Multiple representations Module 1: Left, lecture slide examples;
Center: SNAP program; and right, video game pseudocode

SNAP examples to help the students understand variables,
assignments and operators. The last portion of the class was
dedicated to hands-on activities in SNAP and STEM. Day 2
started off with a concept reprise of variables, assignments and
operators, followed by further extended examples in SNAP to
solidify the topic.

Then the students spent the rest of the afternoon playing
the video game developed in Unity 3D. The various game
levels were based upon the content and concepts that were
expounded upon earlier. It contained questions in the form
of pseudocode snippets, covering the concepts taught in the
respective modules. In the discussion in [9], benefits of the
educational videogame, including its ability to pinpoint student
obstacles and encourage student practice with concepts are
noted. This was the third format in which the same CS
concepts were presented (Fig. 1). During the last 20 minutes
of this segment, the students who needed help in reading were
released to participate in the reading activity for that week. The
subsequent modules followed this same pattern but focused on
differed in content.

B. Module 2: Focus on Conditionals

For Module 2, the students listened to a talk about LEDs
in relation to how they are programmed and used. In the
first presentation of this module, we introduced students to
conditionals using examples like “if it is raining, then take an
umbrella” to foster the concepts of decision making based on
some condition (Fig. 2). They proceeded to create artifacts on
SNAP using conditionals in the second presentation and for
the third presentation students played the video game levels
dedicated to conditionals.

C. Module 3: Focus on Loops

The third module focused on repetition. The module began
with a talk from an architect. Along with other things, she
showed the students how house plans were drawn in the
past manually and how they are done today with the aid
of computer applications. This allowed the students to see
how critical computing has become in this career field. The
first presentation followed this discussion. In this phase, the
students were introduced to repetition and how computers
handle them using loops and repeat patterns. In phase two, we
used SNAP to foster the concept of loops and let the students
practice with several examples. For the third presentation, as



Fig. 2. Multiple representations Module 2: Left, lecture slide examples;
Center: SNAP program; and right, video game pseudocode

usual, the students played the video game levels dedicated to
loops.

V. IMPACT

Measuring student learning is critical to any educational ef-
fort [14]. Therefore, the main objective of our assessment was
to determine the extent to which our instructional intervention
impacted student learning. We used three forms of evaluation
to accomplish this. The first was informal, yet revealing.
The second was quantitative and aimed at assessing logical
reasoning with core concepts. The last one was qualitative
and an evaluation of students’ attitudes.

A. Engagement and Learning

We assigned a final project to the students in SNAP and gave
them a choice—to build a graphic or to build a conversational
agent. We gave them loose guidelines but required them to
implement at least three of the concepts they had learned. We
encouraged the students to take the projects in their own direc-
tion. This was done partly to encourage student involvement
and creativity. We observed that they were focused, engaged,
entertained, and eager to collaborate and share their work.

A female student built a set of functions, each of which
made a unique shape and color. Then she proceeded to use
them like a custom tool palette to produce artwork; see Fig.
3. While her program elements were simple, she succeeded
in expressing herself in a creative way by constructing an art
piece out of coded elements. Another pair of students used a
feature to put two sprites on the screen (something not covered
in the class) and systematically unfolded a story through a
conversation between the two characters. The story might not
have made much sense, but they had a tremendously good
time evolving the storyline and sharing it with their peers.
Their final projects showed evidence of the application of CS
concepts.

B. Quantitative Assessment

To assess the impact on students’ ability to reason logically
in the presence of computational concepts, we employed a pre-
and posttest as described in the experimental design section.
The questions were based on the content delivered to see if
our intervention had any impact. A total of 30 students were
present for both tests: There were 10 in the 3rd grade, 11 in
the 4th grade and 9 in the 5th grade. A majority of all the
students scored higher on the posttest (Fig. 4). A two sample

Fig. 3. Sample of student outcome

z test shows that students’ posttest scores were statistically
significantly higher than the pretest scores. z = -2.35, p =
.001. We conducted a one-tailed t test to see if the difference
between the pre- and posttest scores of the students in each
grade and between the boys and girls was significant. The p
values are as follows: fifth grades: p = 0.004, fourth grade:
p = 0.0001, third grade: p = 0.5. Girls: p = 0.088, boys: p =
0004.

C. Qualitative Assessment

To assess the impact on student attitudes towards computing
and to understand how much they enjoyed the camp, we
administered surveys modeled on those used by the Georgia
Tech Institute for Computing Education in their camps [11].
Two items were of particular interest to us as we embarked
on this coding camp venture: 1) we wanted to know if our
intervention caused the students to become more interested in
computing; and 2) if it had any effect on their self-efficacy.
Overall, we found that more students felt that people like them
can do computing. We also saw that slightly more than half
of the participants think that the camp increased their interest
in computing. A majority found the camp to be fun.

VI. DISCUSSION

The results from our assessments show general cognitive
and affective improvement for most of the participants. The
cognitive assessment shows that there was an overall im-
provement from the pre- to post-test results for most students
(Fig.4). Based on the p values of the statistical analysis of
both the z and t tests, we can conclude that the results of
our assessments are significant. All the participants from the
3rd to the 5th grades were exposed to the same treatment in
order for us to assess how the students in the various grades
would respond. We noticed that the greatest improvement in
test scores was observed amongst the 4th graders, followed by
the 5th graders. The 3rd grade students made some progress
but not as much as the students in the other grades. We
think that this is as a result of the age difference between
the students. We noted however that there was a greater



Fig. 4. Pretest vs. Posttest scores for all students

difference between the tests scores of the students in the
3rd and 4th grades than there was between the 4th and 5th
graders’ scores. We also noticed (from the statistical analysis)
that the boys demonstrated slightly higher improvements from
pre to post-test than the girls (Fig. 5 & 6), although the
student who scored the highest on the post-test assessment and
our overall best student was female. This particular student
was just exceptional and thoroughly enjoyed the camp. She
distinguished herself in attitude and academic excellence.

In this project, we can only report the trends that we
observed in the performance of the students from the data
we collected. However, we are unable to provide sufficient
explanations for the trends and what caused them. This will
be a question for future work.

The students demonstrated in their final projects that they
had indeed gained knowledge of CS concepts. The fact that
they were able to apply at least three of the concepts learned
during the camp to create a final artifact shows that they had
at least learned a subset of the core concepts. We also noticed
that some of the students took off on a tangent with their
projects as they explored other aspects of SNAP that were not
covered in the class. For example, the students who created
the conversational agents did not only use concepts learned in
class but also applied them in another context not necessarily
covered during the lectures. This is further evidence that
the students had gained content knowledge and were excited
enough to push the bounds of the camp curriculum driven by
their own creativity.

When operating a summer camp, one expects that there
would be possible logistical unforeseen circumstances that
could have impact on the camp. In our case, intermittent
transportation failures caused us to make adjustments to the
module on loops (Module 3). Similarly, we started off the
camp with about 40 students but only retained 30 in the end.
This was because we had no control over the circumstances
surrounding the students’ ability to come or not since we were
working with another entity that facilitated the availability of
the students. If a student exited their program in the middle,
then we automatically lost that student which was the case
with a few students.

The fact that this was in the summer also meant that family

Fig. 5. Pre- and post-test scores for girls

traveling time could interfere with student availability. For
future references, providing some sort of incentive for the
students to stay until the end is highly recommended.

The teachers and mentors who participated in this project
served as facilitators in the hands-on sessions when the stu-
dents created artifacts using the knowledge acquired in the
respective modules. To this end, elementary-school teachers
were hired from nearby schools. This project also served
therefore as a professional development opportunity for the
teachers, as they also acquired knowledge in CS concepts.
The parents did not play any active role in this project but
were present on graduation day to see what their children had
accomplished.

VII. CONCLUSION

This paper has presented an approach that uses multiple
representations to help African American elementary school
children learn and enjoy computational concepts. Considering
the fact that CS concepts tend to be abstract in nature and that
abstract content can be difficult for students regardless of their
ages, we attempted to overcome this challenge by employing
a curriculum which facilitates the presentation of CS concepts
in multiple representations. Another rational for our project is
the fact that studies have shown that some of the problems
associated with novice programming are related to a lack of
understanding of CS fundamentals.

In this project, we therefore focused on exploring funda-
mental CS concepts which cut across different languages, in
an effort to expose them to students and jump start their
journey in computer science. The results from the qualitative
assessments, the pre- and posttest show improvements in the
students’ performance. We conclude, based upon them, that
our strategy was useful. We also observed diverse levels and
trends of improvements across the different grades. We have
no explanations for some of the patterns we observed except
for the fact that age plays a role in a student’s ability to grasp
certain concepts. These ideas will be further explored.

Lastly, although this particular endeavor has focused on
African American children, future projects will include other
groups.



Fig. 6. Pre- and post-test scores for boys

ACKNOWLEDGMENTS

This research is funded in part by grants from Boeing South
Carolina, Blackbaud, and NSF (1738760).

REFERENCES

[1] Shaaron Ainsworth. The functions of multiple representations. Comput-
ers & education, 33(2-3):131–152, 1999.

[2] Mark Guzdial, Barbara J Ericson, Tom McKlin, and Shelly Engelman.
A statewide survey on computing education pathways and influences:
factors in broadening participation in computing. In Proceedings of
the ninth annual international conference on International computing
education research, pages 143–150. ACM, 2012.

[3] Mark Guzdial and Barbara Ericson. Georgia computes!: an alliance to
broaden participation across the state of georgia. ACM Inroads, 3(4):86–
89, 2012.

[4] Jane Margolis, Jean J Ryoo, Cueponcaxochitl DM Sandoval, Clifford
Lee, Joanna Goode, and Gail Chapman. Beyond access: Broadening
participation in high school computer science. ACM Inroads, 3(4):72–
78, 2012.

[5] Wing-Kwong Wong, Sheng-Kai Yin, Hsi-Hsun Yang, and Ying-Hao
Cheng. Using computer-assisted multiple representations in learning
geometry proofs. Journal of Educational Technology & Society, 14(3),
2011.

[6] Teemu Sirkiä and Juha Sorva. Exploring programming misconceptions:
an analysis of student mistakes in visual program simulation exercises.
In Proceedings of the 12th Koli Calling International Conference on
Computing Education Research, pages 19–28. ACM, 2012.

[7] Wanda M Kunkle and Robert B Allen. The impact of different
teaching approaches and languages on student learning of introductory
programming concepts. ACM Transactions on Computing Education
(TOCE), 16(1):3, 2016.

[8] Simon. Assignment and sequence: Why some students can’t recognise
a simple swap. In Proceedings of the 11th Koli Calling International
Conference on Computing Education Research, Koli Calling ’11, pages
10–15, New York, NY, USA, 2011. ACM.

[9] Olivia M. Nche, John Welter, Megan Che, Eileen T. Kraemer, Murali
Sitaraman, and Victor Zordan. Combining gaming, cs concepts, and ped-
agogy. In Proceedings of the 4th RESPECT International Conference.
IEEE, 2019.

[10] Dan Garcia, Brian Harvey, and Tiffany Barnes. The beauty and joy of
computing. ACM Inroads, 6(4):71–79, November 2015.

[11] Institute for Computing Education at Georgia Tech. Pre and post surveys.
2011.

[12] Valentina Dagienė, Gabrielė Stupurienė, and Lina Vinikienė. Promoting
inclusive informatics education through the bebras challenge to all k-
12 students. In Proceedings of the 17th International Conference on
Computer Systems and Technologies 2016, pages 407–414. ACM, 2016.

[13] Kathryn M Rich, Carla Strickland, T Andrew Binkowski, Cheryl Moran,
and Diana Franklin. K–8 learning trajectories derived from research
literature: sequence, repetition, conditionals. ACM Inroads, 9(1):46–55,
2018.

[14] Allison Elliott Tew. Assessing fundamental introductory computing
concept knowledge in a language independent manner. PhD thesis,
Georgia Institute of Technology, 2010.


